pytorch指定用多张显卡训练_Pytorch多GPU训练
Pytorch多GPU訓練
臨近放假, 服務器上的GPU好多空閑, 博主順便研究了一下如何用多卡同時訓練
原理
多卡訓練的基本過程
首先把模型加載到一個主設備
把模型只讀復制到多個設備
把大的batch數據也等分到不同的設備
最后將所有設備計算得到的梯度合并更新主設備上的模型參數
代碼實現(以Minist為例)
#!/usr/bin/python3
# coding: utf-8
import torch
from torchvision import datasets, transforms
import torchvision
from tqdm import tqdm
device_ids = [3, 4, 6, 7]
BATCH_SIZE = 64
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5])])
data_train = datasets.MNIST(root = "./data/",
transform=transform,
train = True,
download = True)
data_test = datasets.MNIST(root="./data/",
transform = transform,
train = False)
data_loader_train = torch.utils.data.DataLoader(dataset=data_train,
# 這里注意batch size要對應放大倍數
batch_size = BATCH_SIZE * len(device_ids),
shuffle = True,
num_workers=2)
data_loader_test = torch.utils.data.DataLoader(dataset=data_test,
batch_size = BATCH_SIZE * len(device_ids),
shuffle = True,
num_workers=2)
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.conv1 = torch.nn.Sequential(
torch.nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
torch.nn.ReLU(),
torch.nn.MaxPool2d(stride=2, kernel_size=2),
)
self.dense = torch.nn.Sequential(
torch.nn.Linear(14 * 14 * 128, 1024),
torch.nn.ReLU(),
torch.nn.Dropout(p=0.5),
torch.nn.Linear(1024, 10)
)
def forward(self, x):
x = self.conv1(x)
x = x.view(-1, 14 * 14 * 128)
x = self.dense(x)
return x
model = Model()
model = torch.nn.DataParallel(model, device_ids=device_ids) # 聲明所有可用設備
model = model.cuda(device=device_ids[0]) # 模型放在主設備
cost = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
n_epochs = 50
for epoch in range(n_epochs):
running_loss = 0.0
running_correct = 0
print("Epoch {}/{}".format(epoch, n_epochs))
print("-"*10)
for data in tqdm(data_loader_train):
X_train, y_train = data
# 注意數據也是放在主設備
X_train, y_train = X_train.cuda(device=device_ids[0]), y_train.cuda(device=device_ids[0])
outputs = model(X_train)
_,pred = torch.max(outputs.data, 1)
optimizer.zero_grad()
loss = cost(outputs, y_train)
loss.backward()
optimizer.step()
running_loss += loss.data.item()
running_correct += torch.sum(pred == y_train.data)
testing_correct = 0
for data in data_loader_test:
X_test, y_test = data
X_test, y_test = X_test.cuda(device=device_ids[0]), y_test.cuda(device=device_ids[0])
outputs = model(X_test)
_, pred = torch.max(outputs.data, 1)
testing_correct += torch.sum(pred == y_test.data)
print("Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy is:{:.4f}".format(running_loss/len(data_train),
100*running_correct/len(data_train),
100*testing_correct/len(data_test)))
torch.save(model.state_dict(), "model_parameter.pkl")
結果分析
可以通過nvidia-smi清楚地看到3, 4, 6, 7卡在計算/usr/bin/python3進程(進程號都為34930)
從實際加速效果來看, 由于minist是小數據集, 可能調度帶來的overhead反而比計算的開銷大, 因此加速不明顯. 但是到大數據集上訓練時, 多卡的優勢就會體現出來了
總結
以上是生活随笔為你收集整理的pytorch指定用多张显卡训练_Pytorch多GPU训练的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python hashlib模块_pyt
- 下一篇: git 源代码自动检查_检查提交(git