3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > ChatGpt >内容正文

ChatGpt

今日arXiv精选 | 29篇顶会论文:ACM MM/ ICCV/ CIKM/ AAAI/ IJCAI

發布時間:2024/10/8 ChatGpt 122 豆豆
生活随笔 收集整理的這篇文章主要介紹了 今日arXiv精选 | 29篇顶会论文:ACM MM/ ICCV/ CIKM/ AAAI/ IJCAI 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

?關于?#今日arXiv精選?

這是「AI 學術前沿」旗下的一檔欄目,編輯將每日從arXiv中精選高質量論文,推送給讀者。

Group-based Distinctive Image Captioning with Memory Attention

Comment: Accepted at ACM MM 2021 (oral)

Link:?http://arxiv.org/abs/2108.09151

Abstract

Describing images using natural language is widely known as image captioning,which has made consistent progress due to the development of computer visionand natural language generation techniques. Though conventional captioningmodels achieve high accuracy based on popular metrics, i.e., BLEU, CIDEr, andSPICE, the ability of captions to distinguish the target image from othersimilar images is under-explored. To generate distinctive captions, a fewpioneers employ contrastive learning or re-weighted the ground-truth captions,which focuses on one single input image. However, the relationships betweenobjects in a similar image group (e.g., items or properties within the samealbum or fine-grained events) are neglected. In this paper, we improve thedistinctiveness of image captions using a Group-based Distinctive CaptioningModel (GdisCap), which compares each image with other images in one similargroup and highlights the uniqueness of each image. In particular, we propose agroup-based memory attention (GMA) module, which stores object features thatare unique among the image group (i.e., with low similarity to objects in otherimages). These unique object features are highlighted when generating captions,resulting in more distinctive captions. Furthermore, the distinctive words inthe ground-truth captions are selected to supervise the language decoder andGMA. Finally, we propose a new evaluation metric, distinctive word rate(DisWordRate) to measure the distinctiveness of captions. Quantitative resultsindicate that the proposed method significantly improves the distinctiveness ofseveral baseline models, and achieves the state-of-the-art performance on bothaccuracy and distinctiveness. Results of a user study agree with thequantitative evaluation and demonstrate the rationality of the new metricDisWordRate.

Airbert: In-domain Pretraining for Vision-and-Language Navigation

Comment: To be published on ICCV 2021. Webpage is at ?https://airbert-vln.github.io/ linking to our dataset, codes and models

Link:?http://arxiv.org/abs/2108.09105

Abstract

Vision-and-language navigation (VLN) aims to enable embodied agents tonavigate in realistic environments using natural language instructions. Giventhe scarcity of domain-specific training data and the high diversity of imageand language inputs, the generalization of VLN agents to unseen environmentsremains challenging. Recent methods explore pretraining to improvegeneralization, however, the use of generic image-caption datasets or existingsmall-scale VLN environments is suboptimal and results in limited improvements.In this work, we introduce BnB, a large-scale and diverse in-domain VLNdataset. We first collect image-caption (IC) pairs from hundreds of thousandsof listings from online rental marketplaces. Using IC pairs we next proposeautomatic strategies to generate millions of VLN path-instruction (PI) pairs.We further propose a shuffling loss that improves the learning of temporalorder inside PI pairs. We use BnB pretrain our Airbert model that can beadapted to discriminative and generative settings and show that it outperformsstate of the art for Room-to-Room (R2R) navigation and Remote ReferringExpression (REVERIE) benchmarks. Moreover, our in-domain pretrainingsignificantly increases performance on a challenging few-shot VLN evaluation,where we train the model only on VLN instructions from a few houses.

GEDIT: Geographic-Enhanced and Dependency-Guided Tagging for Joint POI and Accessibility Extraction at Baidu Maps

Comment: Accepted by CIKM'21

Link:?http://arxiv.org/abs/2108.09104

Abstract

Providing timely accessibility reminders of a point-of-interest (POI) plays avital role in improving user satisfaction of finding places and making visitingdecisions. However, it is difficult to keep the POI database in sync with thereal-world counterparts due to the dynamic nature of business changes. Toalleviate this problem, we formulate and present a practical solution thatjointly extracts POI mentions and identifies their coupled accessibility labelsfrom unstructured text. We approach this task as a sequence tagging problem,where the goal is to producepairs fromunstructured text. This task is challenging because of two main issues: (1) POInames are often newly-coined words so as to successfully register new entitiesor brands and (2) there may exist multiple pairs in the text, whichnecessitates dealing with one-to-many or many-to-one mapping to make each POIcoupled with its accessibility label. To this end, we propose aGeographic-Enhanced and Dependency-guIded sequence Tagging (GEDIT) model toconcurrently address the two challenges. First, to alleviate challenge #1, wedevelop a geographic-enhanced pre-trained model to learn the textrepresentations. Second, to mitigate challenge #2, we apply a relational graphconvolutional network to learn the tree node representations from the parseddependency tree. Finally, we construct a neural sequence tagging model byintegrating and feeding the previously pre-learned representations into a CRFlayer. Extensive experiments conducted on a real-world dataset demonstrate thesuperiority and effectiveness of GEDIT. In addition, it has already beendeployed in production at Baidu Maps. Statistics show that the proposedsolution can save significant human effort and labor costs to deal with thesame amount of documents, which confirms that it is a practical way for POIaccessibility maintenance.

SoMeSci- A 5 Star Open Data Gold Standard Knowledge Graph of Software Mentions in Scientific Articles

Comment: Preprint of CIKM 2021 Resource Paper, 10 pages

Link:?http://arxiv.org/abs/2108.09070

Abstract

Knowledge about software used in scientific investigations is important forseveral reasons, for instance, to enable an understanding of provenance andmethods involved in data handling. However, software is usually not formallycited, but rather mentioned informally within the scholarly description of theinvestigation, raising the need for automatic information extraction anddisambiguation. Given the lack of reliable ground truth data, we presentSoMeSci (Software Mentions in Science) a gold standard knowledge graph ofsoftware mentions in scientific articles. It contains high quality annotations(IRR: $\kappa{=}.82$) of 3756 software mentions in 1367 PubMed Centralarticles. Besides the plain mention of the software, we also provide relationlabels for additional information, such as the version, the developer, a URL orcitations. Moreover, we distinguish between different types, such asapplication, plugin or programming environment, as well as different types ofmentions, such as usage or creation. To the best of our knowledge, SoMeSci isthe most comprehensive corpus about software mentions in scientific articles,providing training samples for Named Entity Recognition, Relation Extraction,Entity Disambiguation, and Entity Linking. Finally, we sketch potential usecases and provide baseline results.

Twitter User Representation using Weakly Supervised Graph Embedding

Comment: accepted at 16th International AAAI Conference on Web and Social ?Media (ICWSM-2022), direct accept from May 2021 submission, 12 pages

Link:?http://arxiv.org/abs/2108.08988

Abstract

Social media platforms provide convenient means for users to participate inmultiple online activities on various contents and create fast widespreadinteractions. However, this rapidly growing access has also increased thediverse information, and characterizing user types to understand people'slifestyle decisions shared in social media is challenging. In this paper, wepropose a weakly supervised graph embedding based framework for understandinguser types. We evaluate the user embedding learned using weak supervision overwell-being related tweets from Twitter, focusing on 'Yoga', 'Keto diet'.Experiments on real-world datasets demonstrate that the proposed frameworkoutperforms the baselines for detecting user types. Finally, we illustrate dataanalysis on different types of users (e.g., practitioner vs. promotional) fromour dataset. While we focus on lifestyle-related tweets (i.e., yoga, keto), ourmethod for constructing user representation readily generalizes to otherdomains.

SMedBERT: A Knowledge-Enhanced Pre-trained Language Model with Structured Semantics for Medical Text Mining

Comment: ACL2021

Link:?http://arxiv.org/abs/2108.08983

Abstract

Recently, the performance of Pre-trained Language Models (PLMs) has beensignificantly improved by injecting knowledge facts to enhance their abilitiesof language understanding. For medical domains, the background knowledgesources are especially useful, due to the massive medical terms and theircomplicated relations are difficult to understand in text. In this work, weintroduce SMedBERT, a medical PLM trained on large-scale medical corpora,incorporating deep structured semantic knowledge from neighbors oflinked-entity.In SMedBERT, the mention-neighbor hybrid attention is proposed tolearn heterogeneous-entity information, which infuses the semanticrepresentations of entity types into the homogeneous neighboring entitystructure. Apart from knowledge integration as external features, we propose toemploy the neighbors of linked-entities in the knowledge graph as additionalglobal contexts of text mentions, allowing them to communicate via sharedneighbors, thus enrich their semantic representations. Experiments demonstratethat SMedBERT significantly outperforms strong baselines in variousknowledge-intensive Chinese medical tasks. It also improves the performance ofother tasks such as question answering, question matching and natural languageinference.

Discriminative Region-based Multi-Label Zero-Shot Learning

Comment: Accepted to ICCV 2021. Source code is available at ?https://github.com/akshitac8/BiAM

Link:?http://arxiv.org/abs/2108.09301

Abstract

Multi-label zero-shot learning (ZSL) is a more realistic counter-part ofstandard single-label ZSL since several objects can co-exist in a naturalimage. However, the occurrence of multiple objects complicates the reasoningand requires region-specific processing of visual features to preserve theircontextual cues. We note that the best existing multi-label ZSL method takes ashared approach towards attending to region features with a common set ofattention maps for all the classes. Such shared maps lead to diffusedattention, which does not discriminatively focus on relevant locations when thenumber of classes are large. Moreover, mapping spatially-pooled visual featuresto the class semantics leads to inter-class feature entanglement, thushampering the classification. Here, we propose an alternate approach towardsregion-based discriminability-preserving multi-label zero-shot classification.Our approach maintains the spatial resolution to preserve region-levelcharacteristics and utilizes a bi-level attention module (BiAM) to enrich thefeatures by incorporating both region and scene context information. Theenriched region-level features are then mapped to the class semantics and onlytheir class predictions are spatially pooled to obtain image-level predictions,thereby keeping the multi-class features disentangled. Our approach sets a newstate of the art on two large-scale multi-label zero-shot benchmarks: NUS-WIDEand Open Images. On NUS-WIDE, our approach achieves an absolute gain of 6.9%mAP for ZSL, compared to the best published results.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction

Comment: Accepted at ICCV 2021; Code available: ?https://github.com/selflein/MG-GAN

Link:?http://arxiv.org/abs/2108.09274

Abstract

Pedestrian trajectory prediction is challenging due to its uncertain andmultimodal nature. While generative adversarial networks can learn adistribution over future trajectories, they tend to predict out-of-distributionsamples when the distribution of future trajectories is a mixture of multiple,possibly disconnected modes. To address this issue, we propose amulti-generator model for pedestrian trajectory prediction. Each generatorspecializes in learning a distribution over trajectories routing towards one ofthe primary modes in the scene, while a second network learns a categoricaldistribution over these generators, conditioned on the dynamics and sceneinput. This architecture allows us to effectively sample from specializedgenerators and to significantly reduce the out-of-distribution samples comparedto single generator methods.

Continual Learning for Image-Based Camera Localization

Comment: ICCV 2021

Link:?http://arxiv.org/abs/2108.09112

Abstract

For several emerging technologies such as augmented reality, autonomousdriving and robotics, visual localization is a critical component. Directlyregressing camera pose/3D scene coordinates from the input image using deepneural networks has shown great potential. However, such methods assume astationary data distribution with all scenes simultaneously available duringtraining. In this paper, we approach the problem of visual localization in acontinual learning setup -- whereby the model is trained on scenes in anincremental manner. Our results show that similar to the classification domain,non-stationary data induces catastrophic forgetting in deep networks for visuallocalization. To address this issue, a strong baseline based on storing andreplaying images from a fixed buffer is proposed. Furthermore, we propose a newsampling method based on coverage score (Buff-CS) that adapts the existingsampling strategies in the buffering process to the problem of visuallocalization. Results demonstrate consistent improvements over standardbuffering methods on two challenging datasets -- 7Scenes, 12Scenes, and also19Scenes by combining the former scenes.

Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.09108

Abstract

This paper proposes a novel deep learning approach for single image defocusdeblurring based on inverse kernels. In a defocused image, the blur shapes aresimilar among pixels although the blur sizes can spatially vary. To utilize theproperty with inverse kernels, we exploit the observation that when only thesize of a defocus blur changes while keeping the shape, the shape of thecorresponding inverse kernel remains the same and only the scale changes. Basedon the observation, we propose a kernel-sharing parallel atrous convolutional(KPAC) block specifically designed by incorporating the property of inversekernels for single image defocus deblurring. To effectively simulate theinvariant shapes of inverse kernels with different scales, KPAC shares the sameconvolutional weights among multiple atrous convolution layers. To efficientlysimulate the varying scales of inverse kernels, KPAC consists of only a fewatrous convolution layers with different dilations and learns per-pixel scaleattentions to aggregate the outputs of the layers. KPAC also utilizes the shapeattention to combine the outputs of multiple convolution filters in each atrousconvolution layer, to deal with defocus blur with a slightly varying shape. Wedemonstrate that our approach achieves state-of-the-art performance with a muchsmaller number of parameters than previous methods.

Towards Understanding the Generative Capability of Adversarially Robust Classifiers

Comment: Accepted by ICCV 2021, Oral

Link:?http://arxiv.org/abs/2108.09093

Abstract

Recently, some works found an interesting phenomenon that adversariallyrobust classifiers can generate good images comparable to generative models. Weinvestigate this phenomenon from an energy perspective and provide a novelexplanation. We reformulate adversarial example generation, adversarialtraining, and image generation in terms of an energy function. We find thatadversarial training contributes to obtaining an energy function that is flatand has low energy around the real data, which is the key for generativecapability. Based on our new understanding, we further propose a betteradversarial training method, Joint Energy Adversarial Training (JEAT), whichcan generate high-quality images and achieve new state-of-the-art robustnessunder a wide range of attacks. The Inception Score of the images (CIFAR-10)generated by JEAT is 8.80, much better than original robust classifiers (7.50).In particular, we achieve new state-of-the-art robustness on CIFAR-10 (from57.20% to 62.04%) and CIFAR-100 (from 30.03% to 30.18%) without extra trainingdata.

AutoLay: Benchmarking amodal layout estimation for autonomous driving

Comment: published in 2020 IEEE/RSJ International Conference on Intelligent ?Robots and Systems (IROS)

Link:?http://arxiv.org/abs/2108.09047

Abstract

Given an image or a video captured from a monocular camera, amodal layoutestimation is the task of predicting semantics and occupancy in bird's eyeview. The term amodal implies we also reason about entities in the scene thatare occluded or truncated in image space. While several recent efforts havetackled this problem, there is a lack of standardization in task specification,datasets, and evaluation protocols. We address these gaps with AutoLay, adataset and benchmark for amodal layout estimation from monocular images.AutoLay encompasses driving imagery from two popular datasets: KITTI andArgoverse. In addition to fine-grained attributes such as lanes, sidewalks, andvehicles, we also provide semantically annotated 3D point clouds. We implementseveral baselines and bleeding edge approaches, and release our data and code.

Out-of-boundary View Synthesis Towards Full-Frame Video Stabilization

Comment: 10 pages, 6 figures, accepted by ICCV2021

Link:?http://arxiv.org/abs/2108.09041

Abstract

Warping-based video stabilizers smooth camera trajectory by constraining eachpixel's displacement and warp stabilized frames from unstable ones accordingly.However, since the view outside the boundary is not available during warping,the resulting holes around the boundary of the stabilized frame must bediscarded (i.e., cropping) to maintain visual consistency, and thus does leadsto a tradeoff between stability and cropping ratio. In this paper, we make afirst attempt to address this issue by proposing a new Out-of-boundary ViewSynthesis (OVS) method. By the nature of spatial coherence between adjacentframes and within each frame, OVS extrapolates the out-of-boundary view byaligning adjacent frames to each reference one. Technically, it firstcalculates the optical flow and propagates it to the outer boundary regionaccording to the affinity, and then warps pixels accordingly. OVS can beintegrated into existing warping-based stabilizers as a plug-and-play module tosignificantly improve the cropping ratio of the stabilized results. Inaddition, stability is improved because the jitter amplification effect causedby cropping and resizing is reduced. Experimental results on the NUS benchmarkshow that OVS can improve the performance of five representativestate-of-the-art methods in terms of objective metrics and subjective visualquality. The code is publicly available athttps://github.com/Annbless/OVS_Stabilization.

Video-based Person Re-identification with Spatial and Temporal Memory Networks

Comment: International Conference on Computer Vision (ICCV) 2021

Link:?http://arxiv.org/abs/2108.09039

Abstract

Video-based person re-identification (reID) aims to retrieve person videoswith the same identity as a query person across multiple cameras. Spatial andtemporal distractors in person videos, such as background clutter and partialocclusions over frames, respectively, make this task much more challenging thanimage-based person reID. We observe that spatial distractors appearconsistently in a particular location, and temporal distractors show severalpatterns, e.g., partial occlusions occur in the first few frames, where suchpatterns provide informative cues for predicting which frames to focus on(i.e., temporal attentions). Based on this, we introduce a novel Spatial andTemporal Memory Networks (STMN). The spatial memory stores features for spatialdistractors that frequently emerge across video frames, while the temporalmemory saves attentions which are optimized for typical temporal patterns inperson videos. We leverage the spatial and temporal memories to refineframe-level person representations and to aggregate the refined frame-levelfeatures into a sequence-level person representation, respectively, effectivelyhandling spatial and temporal distractors in person videos. We also introduce amemory spread loss preventing our model from addressing particular items onlyin the memories. Experimental results on standard benchmarks, including MARS,DukeMTMC-VideoReID, and LS-VID, demonstrate the effectiveness of our method.

Is it Time to Replace CNNs with Transformers for Medical Images?

Comment: Originally published at the ICCV 2021 Workshop on Computer Vision for ?Automated Medical Diagnosis (CVAMD)

Link:?http://arxiv.org/abs/2108.09038

Abstract

Convolutional Neural Networks (CNNs) have reigned for a decade as the defacto approach to automated medical image diagnosis. Recently, visiontransformers (ViTs) have appeared as a competitive alternative to CNNs,yielding similar levels of performance while possessing several interestingproperties that could prove beneficial for medical imaging tasks. In this work,we explore whether it is time to move to transformer-based models or if weshould keep working with CNNs - can we trivially switch to transformers? If so,what are the advantages and drawbacks of switching to ViTs for medical imagediagnosis? We consider these questions in a series of experiments on threemainstream medical image datasets. Our findings show that, while CNNs performbetter when trained from scratch, off-the-shelf vision transformers usingdefault hyperparameters are on par with CNNs when pretrained on ImageNet, andoutperform their CNN counterparts when pretrained using self-supervision.

AdvDrop: Adversarial Attack to DNNs by Dropping Information

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.09034

Abstract

Human can easily recognize visual objects with lost information: even losingmost details with only contour reserved, e.g. cartoon. However, in terms ofvisual perception of Deep Neural Networks (DNNs), the ability for recognizingabstract objects (visual objects with lost information) is still a challenge.In this work, we investigate this issue from an adversarial viewpoint: will theperformance of DNNs decrease even for the images only losing a littleinformation? Towards this end, we propose a novel adversarial attack, named\textit{AdvDrop}, which crafts adversarial examples by dropping existinginformation of images. Previously, most adversarial attacks add extradisturbing information on clean images explicitly. Opposite to previous works,our proposed work explores the adversarial robustness of DNN models in a novelperspective by dropping imperceptible details to craft adversarial examples. Wedemonstrate the effectiveness of \textit{AdvDrop} by extensive experiments, andshow that this new type of adversarial examples is more difficult to bedefended by current defense systems.

Pixel Contrastive-Consistent Semi-Supervised Semantic Segmentation

Comment: To appear in ICCV 2021

Link:?http://arxiv.org/abs/2108.09025

Abstract

We present a novel semi-supervised semantic segmentation method which jointlyachieves two desiderata of segmentation model regularities: the label-spaceconsistency property between image augmentations and the feature-spacecontrastive property among different pixels. We leverage the pixel-level L2loss and the pixel contrastive loss for the two purposes respectively. Toaddress the computational efficiency issue and the false negative noise issueinvolved in the pixel contrastive loss, we further introduce and investigateseveral negative sampling techniques. Extensive experiments demonstrate thestate-of-the-art performance of our method (PC2Seg) with the DeepLab-v3+architecture, in several challenging semi-supervised settings derived from theVOC, Cityscapes, and COCO datasets.

Online Continual Learning with Natural Distribution Shifts: An Empirical Study with Visual Data

Comment: Accepted to ICCV 2021

Link:?http://arxiv.org/abs/2108.09020

Abstract

Continual learning is the problem of learning and retaining knowledge throughtime over multiple tasks and environments. Research has primarily focused onthe incremental classification setting, where new tasks/classes are added atdiscrete time intervals. Such an "offline" setting does not evaluate theability of agents to learn effectively and efficiently, since an agent canperform multiple learning epochs without any time limitation when a task isadded. We argue that "online" continual learning, where data is a singlecontinuous stream without task boundaries, enables evaluating both informationretention and online learning efficacy. In online continual learning, eachincoming small batch of data is first used for testing and then added to thetraining set, making the problem truly online. Trained models are laterevaluated on historical data to assess information retention. We introduce anew benchmark for online continual visual learning that exhibits large scaleand natural distribution shifts. Through a large-scale analysis, we identifycritical and previously unobserved phenomena of gradient-based optimization incontinual learning, and propose effective strategies for improvinggradient-based online continual learning with real data. The source code anddataset are available in: https://github.com/IntelLabs/continuallearning.

DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection

Comment: Accepted by ICCV 2021

Link:?http://arxiv.org/abs/2108.09017

Abstract

Few-shot object detection, which aims at detecting novel objects rapidly fromextremely few annotated examples of previously unseen classes, has attractedsignificant research interest in the community. Most existing approaches employthe Faster R-CNN as basic detection framework, yet, due to the lack of tailoredconsiderations for data-scarce scenario, their performance is often notsatisfactory. In this paper, we look closely into the conventional Faster R-CNNand analyze its contradictions from two orthogonal perspectives, namelymulti-stage (RPN vs. RCNN) and multi-task (classification vs. localization). Toresolve these issues, we propose a simple yet effective architecture, namedDecoupled Faster R-CNN (DeFRCN). To be concrete, we extend Faster R-CNN byintroducing Gradient Decoupled Layer for multi-stage decoupling andPrototypical Calibration Block for multi-task decoupling. The former is a noveldeep layer with redefining the feature-forward operation and gradient-backwardoperation for decoupling its subsequent layer and preceding layer, and thelatter is an offline prototype-based classification model with taking theproposals from detector as input and boosting the original classificationscores with additional pairwise scores for calibration. Extensive experimentson multiple benchmarks show our framework is remarkably superior to otherexisting approaches and establishes a new state-of-the-art in few-shotliterature.

Dual Projection Generative Adversarial Networks for Conditional Image Generation

Comment: Accepted at ICCV-21

Link:?http://arxiv.org/abs/2108.09016

Abstract

Conditional Generative Adversarial Networks (cGANs) extend the standardunconditional GAN framework to learning joint data-label distributions fromsamples, and have been established as powerful generative models capable ofgenerating high-fidelity imagery. A challenge of training such a model lies inproperly infusing class information into its generator and discriminator. Forthe discriminator, class conditioning can be achieved by either (1) directlyincorporating labels as input or (2) involving labels in an auxiliaryclassification loss. In this paper, we show that the former directly aligns theclass-conditioned fake-and-real data distributions$P(\text{image}|\text{class})$ ({\em data matching}), while the latter alignsdata-conditioned class distributions $P(\text{class}|\text{image})$ ({\em labelmatching}). Although class separability does not directly translate to samplequality and becomes a burden if classification itself is intrinsicallydifficult, the discriminator cannot provide useful guidance for the generatorif features of distinct classes are mapped to the same point and thus becomeinseparable. Motivated by this intuition, we propose a Dual Projection GAN(P2GAN) model that learns to balance between {\em data matching} and {\em labelmatching}. We then propose an improved cGAN model with Auxiliary Classificationthat directly aligns the fake and real conditionals$P(\text{class}|\text{image})$ by minimizing their $f$-divergence. Experimentson a synthetic Mixture of Gaussian (MoG) dataset and a variety of real-worlddatasets including CIFAR100, ImageNet, and VGGFace2 demonstrate the efficacy ofour proposed models.

GAN Inversion for Out-of-Range Images with Geometric Transformations

Comment: Accepted to ICCV 2021. For supplementary material, see ?https://kkang831.github.io/publication/ICCV_2021_BDInvert/

Link:?http://arxiv.org/abs/2108.08998

Abstract

For successful semantic editing of real images, it is critical for a GANinversion method to find an in-domain latent code that aligns with the domainof a pre-trained GAN model. Unfortunately, such in-domain latent codes can befound only for in-range images that align with the training images of a GANmodel. In this paper, we propose BDInvert, a novel GAN inversion approach tosemantic editing of out-of-range images that are geometrically unaligned withthe training images of a GAN model. To find a latent code that is semanticallyeditable, BDInvert inverts an input out-of-range image into an alternativelatent space than the original latent space. We also propose a regularizedinversion method to find a solution that supports semantic editing in thealternative space. Our experiments show that BDInvert effectively supportssemantic editing of out-of-range images with geometric transformations.

Few Shot Activity Recognition Using Variational Inference

Comment: Accepted in IJCAI 2021 - 3RD INTERNATIONAL WORKSHOP ON DEEP LEARNING ?FOR HUMAN ACTIVITY RECOGNITION. arXiv admin note: text overlap with ?arXiv:1611.09630, arXiv:1909.07945 by other authors

Link:?http://arxiv.org/abs/2108.08990

Abstract

There has been a remarkable progress in learning a model which couldrecognise novel classes with only a few labeled examples in the last few years.Few-shot learning (FSL) for action recognition is a challenging task ofrecognising novel action categories which are represented by few instances inthe training data. We propose a novel variational inference based architecturalframework (HF-AR) for few shot activity recognition. Our framework leveragesvolume-preserving Householder Flow to learn a flexible posterior distributionof the novel classes. This results in better performance as compared tostate-of-the-art few shot approaches for human activity recognition. approachconsists of base model and an adapter model. Our architecture consists of abase model and an adapter model. The base model is trained on seen classes andit computes an embedding that represent the spatial and temporal insightsextracted from the input video, e.g. combination of Resnet-152 and LSTM basedencoder-decoder model. The adapter model applies a series of Householdertransformations to compute a flexible posterior distribution that lends higheraccuracy in the few shot approach. Extensive experiments on three well-knowndatasets: UCF101, HMDB51 and Something-Something-V2, demonstrate similar orbetter performance on 1-shot and 5-shot classification as compared tostate-of-the-art few shot approaches that use only RGB frame sequence as input.To the best of our knowledge, we are the first to explore variational inferencealong with householder transformations to capture the full rank covariancematrix of posterior distribution, for few shot learning in activityrecognition.

Parsing Birdsong with Deep Audio Embeddings

Comment: IJCAI 2021 Artificial Intelligence for Social Good (AI4SG) Workshop

Link:?http://arxiv.org/abs/2108.09203

Abstract

Monitoring of bird populations has played a vital role in conservationefforts and in understanding biodiversity loss. The automation of this processhas been facilitated by both sensing technologies, such as passive acousticmonitoring, and accompanying analytical tools, such as deep learning. However,machine learning models frequently have difficulty generalizing to examples notencountered in the training data. In our work, we present a semi-supervisedapproach to identify characteristic calls and environmental noise. We utilizeseveral methods to learn a latent representation of audio samples, including aconvolutional autoencoder and two pre-trained networks, and group the resultingembeddings for a domain expert to identify cluster labels. We show that ourapproach can improve classification precision and provide insight into thelatent structure of environmental acoustic datasets.

Reinforcement Learning to Optimize Lifetime Value in Cold-Start Recommendation

Comment: Accepted by CIKM 2021

Link:?http://arxiv.org/abs/2108.09141

Abstract

Recommender system plays a crucial role in modern E-commerce platform. Due tothe lack of historical interactions between users and items, cold-startrecommendation is a challenging problem. In order to alleviate the cold-startissue, most existing methods introduce content and contextual information asthe auxiliary information. Nevertheless, these methods assume the recommendeditems behave steadily over time, while in a typical E-commerce scenario, itemsgenerally have very different performances throughout their life period. Insuch a situation, it would be beneficial to consider the long-term return fromthe item perspective, which is usually ignored in conventional methods.Reinforcement learning (RL) naturally fits such a long-term optimizationproblem, in which the recommender could identify high potential items,proactively allocate more user impressions to boost their growth, thereforeimprove the multi-period cumulative gains. Inspired by this idea, we model theprocess as a Partially Observable and Controllable Markov Decision Process(POC-MDP), and propose an actor-critic RL framework (RL-LTV) to incorporate theitem lifetime values (LTV) into the recommendation. In RL-LTV, the criticstudies historical trajectories of items and predict the future LTV of freshitem, while the actor suggests a score-based policy which maximizes the futureLTV expectation. Scores suggested by the actor are then combined with classicalranking scores in a dual-rank framework, therefore the recommendation isbalanced with the LTV consideration. Our method outperforms the strong livebaseline with a relative improvement of 8.67% and 18.03% on IPV and GMV ofcold-start items, on one of the largest E-commerce platform.

Lessons from the Clustering Analysis of a Search Space: A Centroid-based Approach to Initializing NAS

Comment: Accepted to the Workshop on 'Data Science Meets Optimisation' at ?IJCAI 2021

Link:?http://arxiv.org/abs/2108.09126

Abstract

Lots of effort in neural architecture search (NAS) research has beendedicated to algorithmic development, aiming at designing more efficient andless costly methods. Nonetheless, the investigation of the initialization ofthese techniques remain scare, and currently most NAS methodologies rely onstochastic initialization procedures, because acquiring information prior tosearch is costly. However, the recent availability of NAS benchmarks haveenabled low computational resources prototyping. In this study, we propose toaccelerate a NAS algorithm using a data-driven initialization technique,leveraging the availability of NAS benchmarks. Particularly, we proposed atwo-step methodology. First, a calibrated clustering analysis of the searchspace is performed. Second, the centroids are extracted and used to initializea NAS algorithm. We tested our proposal using Aging Evolution, an evolutionaryalgorithm, on NAS-bench-101. The results show that, compared to a randominitialization, a faster convergence and a better performance of the finalsolution is achieved.

DL-Traff: Survey and Benchmark of Deep Learning Models for Urban Traffic Prediction

Comment: This paper has been accepted by CIKM 2021 Resource Track

Link:?http://arxiv.org/abs/2108.09091

Abstract

Nowadays, with the rapid development of IoT (Internet of Things) and CPS(Cyber-Physical Systems) technologies, big spatiotemporal data are beinggenerated from mobile phones, car navigation systems, and traffic sensors. Byleveraging state-of-the-art deep learning technologies on such data, urbantraffic prediction has drawn a lot of attention in AI and IntelligentTransportation System community. The problem can be uniformly modeled with a 3Dtensor (T, N, C), where T denotes the total time steps, N denotes the size ofthe spatial domain (i.e., mesh-grids or graph-nodes), and C denotes thechannels of information. According to the specific modeling strategy, thestate-of-the-art deep learning models can be divided into three categories:grid-based, graph-based, and multivariate time-series models. In this study, wefirst synthetically review the deep traffic models as well as the widely useddatasets, then build a standard benchmark to comprehensively evaluate theirperformances with the same settings and metrics. Our study named DL-Traff isimplemented with two most popular deep learning frameworks, i.e., TensorFlowand PyTorch, which is already publicly available as two GitHub repositorieshttps://github.com/deepkashiwa20/DL-Traff-Grid andhttps://github.com/deepkashiwa20/DL-Traff-Graph. With DL-Traff, we hope todeliver a useful resource to researchers who are interested in spatiotemporaldata analysis.

FedSkel: Efficient Federated Learning on Heterogeneous Systems with Skeleton Gradients Update

Comment: CIKM 2021

Link:?http://arxiv.org/abs/2108.09081

Abstract

Federated learning aims to protect users' privacy while performing dataanalysis from different participants. However, it is challenging to guaranteethe training efficiency on heterogeneous systems due to the variouscomputational capabilities and communication bottlenecks. In this work, wepropose FedSkel to enable computation-efficient and communication-efficientfederated learning on edge devices by only updating the model's essentialparts, named skeleton networks. FedSkel is evaluated on real edge devices withimbalanced datasets. Experimental results show that it could achieve up to5.52$\times$ speedups for CONV layers' back-propagation, 1.82$\times$ speedupsfor the whole training process, and reduce 64.8% communication cost, withnegligible accuracy loss.

ASAT: Adaptively Scaled Adversarial Training in Time Series

Comment: Accepted to be appeared in Workshop on Machine Learning in Finance ?(KDD-MLF) 2021

Link:?http://arxiv.org/abs/2108.08976

Abstract

Adversarial training is a method for enhancing neural networks to improve therobustness against adversarial examples. Besides the security concerns ofpotential adversarial examples, adversarial training can also improve theperformance of the neural networks, train robust neural networks, and provideinterpretability for neural networks. In this work, we take the first step tointroduce adversarial training in time series analysis by taking the financefield as an example. Rethinking existing researches of adversarial training, wepropose the adaptively scaled adversarial training (ASAT) in time seriesanalysis, by treating data at different time slots with time-dependentimportance weights. Experimental results show that the proposed ASAT canimprove both the accuracy and the adversarial robustness of neural networks.Besides enhancing neural networks, we also propose the dimension-wiseadversarial sensitivity indicator to probe the sensitivities and importance ofinput dimensions. With the proposed indicator, we can explain the decisionbases of black box neural networks.

Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework and Survey

Comment: 22 pages, 7 figures

Link:?http://arxiv.org/abs/2108.09003

Abstract

Broad Explainable Artificial Intelligence moves away from interpretingindividual decisions based on a single datum and aims to provide integratedexplanations from multiple machine learning algorithms into a coherentexplanation of an agent's behaviour that is aligned to the communication needsof the explainee. Reinforcement Learning (RL) methods, we propose, provide apotential backbone for the cognitive model required for the development ofBroad-XAI. RL represents a suite of approaches that have had increasing successin solving a range of sequential decision-making problems. However, thesealgorithms all operate as black-box problem solvers, where they obfuscate theirdecision-making policy through a complex array of values and functions.EXplainable RL (XRL) is relatively recent field of research that aims todevelop techniques to extract concepts from the agent's: perception of theenvironment; intrinsic/extrinsic motivations/beliefs; Q-values, goals andobjectives. This paper aims to introduce a conceptual framework, called theCausal XRL Framework (CXF), that unifies the current XRL research and uses RLas a backbone to the development of Broad-XAI. Additionally, we recognise thatRL methods have the ability to incorporate a range of technologies to allowagents to adapt to their environment. CXF is designed for the incorporation ofmany standard RL extensions and integrated with external ontologies andcommunication facilities so that the agent can answer questions that explainoutcomes and justify its decisions.

·

總結

以上是生活随笔為你收集整理的今日arXiv精选 | 29篇顶会论文:ACM MM/ ICCV/ CIKM/ AAAI/ IJCAI的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

精品一区二区不卡无码av | 黑人粗大猛烈进出高潮视频 | 爆乳一区二区三区无码 | 国产精品多人p群无码 | 亚洲男人av香蕉爽爽爽爽 | 精品欧洲av无码一区二区三区 | 国产成人精品久久亚洲高清不卡 | 国产香蕉尹人综合在线观看 | 日本免费一区二区三区最新 | 久久精品人人做人人综合试看 | 天天爽夜夜爽夜夜爽 | а√天堂www在线天堂小说 | 18黄暴禁片在线观看 | 亚洲欧美国产精品专区久久 | 精品国产一区二区三区av 性色 | 55夜色66夜色国产精品视频 | 久久精品国产一区二区三区肥胖 | 亚洲国产一区二区三区在线观看 | 精品人妻中文字幕有码在线 | 男人和女人高潮免费网站 | 5858s亚洲色大成网站www | 日本精品久久久久中文字幕 | 色一情一乱一伦一区二区三欧美 | 日韩欧美成人免费观看 | 大肉大捧一进一出视频出来呀 | 久久国产劲爆∧v内射 | 性色欲网站人妻丰满中文久久不卡 | 女人被男人爽到呻吟的视频 | 欧美xxxx黑人又粗又长 | 西西人体www44rt大胆高清 | 香港三级日本三级妇三级 | 欧美乱妇无乱码大黄a片 | 97夜夜澡人人双人人人喊 | 国产真人无遮挡作爱免费视频 | 久久久久久av无码免费看大片 | 久久精品国产日本波多野结衣 | 99精品久久毛片a片 | 国产精品久久久av久久久 | 自拍偷自拍亚洲精品被多人伦好爽 | 中文字幕无码免费久久99 | 成人欧美一区二区三区黑人 | 无码人妻精品一区二区三区不卡 | 少妇人妻偷人精品无码视频 | 成 人 免费观看网站 | 亚洲中文无码av永久不收费 | 精品偷自拍另类在线观看 | 精品无人国产偷自产在线 | 国产高清av在线播放 | 国产精品美女久久久久av爽李琼 | 天天躁日日躁狠狠躁免费麻豆 | 亚洲乱码中文字幕在线 | 小泽玛莉亚一区二区视频在线 | 久久精品人妻少妇一区二区三区 | 午夜免费福利小电影 | 国色天香社区在线视频 | 又粗又大又硬毛片免费看 | 成人免费无码大片a毛片 | 久久亚洲中文字幕精品一区 | 中文字幕乱妇无码av在线 | 精品亚洲韩国一区二区三区 | 国产综合久久久久鬼色 | 扒开双腿疯狂进出爽爽爽视频 | 免费网站看v片在线18禁无码 | 欧美兽交xxxx×视频 | 黄网在线观看免费网站 | 精品欧洲av无码一区二区三区 | 久久99精品国产麻豆蜜芽 | 黑人巨大精品欧美一区二区 | 3d动漫精品啪啪一区二区中 | 红桃av一区二区三区在线无码av | 国精品人妻无码一区二区三区蜜柚 | 精品 日韩 国产 欧美 视频 | √天堂资源地址中文在线 | 国产一区二区三区四区五区加勒比 | 爆乳一区二区三区无码 | 鲁一鲁av2019在线 | 日本一区二区三区免费播放 | 亚洲精品一区三区三区在线观看 | 欧洲极品少妇 | 四十如虎的丰满熟妇啪啪 | 日本一卡二卡不卡视频查询 | 国产麻豆精品精东影业av网站 | 少妇一晚三次一区二区三区 | 国产一区二区三区四区五区加勒比 | 婷婷丁香六月激情综合啪 | 亚洲呦女专区 | 亚洲va欧美va天堂v国产综合 | 真人与拘做受免费视频一 | 成人女人看片免费视频放人 | 欧美亚洲国产一区二区三区 | 国产一精品一av一免费 | 色欲综合久久中文字幕网 | 国产精品无码成人午夜电影 | 国产sm调教视频在线观看 | 久久精品国产大片免费观看 | 久久精品中文闷骚内射 | 激情人妻另类人妻伦 | 午夜无码区在线观看 | 亚洲成色在线综合网站 | 国产熟女一区二区三区四区五区 | 人妻少妇被猛烈进入中文字幕 | 精品一区二区三区无码免费视频 | 亚洲人亚洲人成电影网站色 | 国产乡下妇女做爰 | 天海翼激烈高潮到腰振不止 | 男女性色大片免费网站 | 漂亮人妻洗澡被公强 日日躁 | 午夜精品久久久久久久久 | 夜夜高潮次次欢爽av女 | 欧美野外疯狂做受xxxx高潮 | 亚洲成av人影院在线观看 | 天天躁日日躁狠狠躁免费麻豆 | 人人澡人人妻人人爽人人蜜桃 | 中文字幕av伊人av无码av | 久久久久久九九精品久 | 欧美亚洲日韩国产人成在线播放 | 精品乱码久久久久久久 | 亚洲中文字幕无码中字 | 老熟女重囗味hdxx69 | 亚洲成av人片在线观看无码不卡 | 高清无码午夜福利视频 | 欧美黑人性暴力猛交喷水 | 国产偷国产偷精品高清尤物 | 天天摸天天碰天天添 | 日本一区二区三区免费播放 | 亚洲精品欧美二区三区中文字幕 | 国产香蕉尹人综合在线观看 | 亚洲精品无码国产 | 真人与拘做受免费视频 | 精品国产一区二区三区四区在线看 | 少妇人妻av毛片在线看 | 成人综合网亚洲伊人 | 永久免费观看美女裸体的网站 | 国产在线一区二区三区四区五区 | 国产麻豆精品精东影业av网站 | 久久精品国产精品国产精品污 | 色欲久久久天天天综合网精品 | 日韩av无码一区二区三区不卡 | 蜜桃臀无码内射一区二区三区 | 国产精品无码永久免费888 | 动漫av网站免费观看 | 亚洲精品一区二区三区四区五区 | 免费人成网站视频在线观看 | 天天av天天av天天透 | 婷婷五月综合激情中文字幕 | 激情国产av做激情国产爱 | 久久精品国产一区二区三区肥胖 | 超碰97人人射妻 | 激情内射亚州一区二区三区爱妻 | 国产口爆吞精在线视频 | a在线观看免费网站大全 | 中文字幕无码免费久久9一区9 | 精品少妇爆乳无码av无码专区 | 国内精品一区二区三区不卡 | 国产精品久久久久9999小说 | 野狼第一精品社区 | 亚洲 欧美 激情 小说 另类 | 97无码免费人妻超级碰碰夜夜 | 无码乱肉视频免费大全合集 | 国内精品九九久久久精品 | 亚洲中文字幕无码中文字在线 | 国产精品久久久久久无码 | 国产精品久久久久久久9999 | 中国女人内谢69xxxxxa片 | 性欧美熟妇videofreesex | 亚洲熟女一区二区三区 | 久久久久国色av免费观看性色 | 在线观看国产午夜福利片 | 亚洲中文字幕无码一久久区 | 久久亚洲精品中文字幕无男同 | 久久99精品国产.久久久久 | 妺妺窝人体色www婷婷 | 99久久精品国产一区二区蜜芽 | 国产午夜亚洲精品不卡 | 日日噜噜噜噜夜夜爽亚洲精品 | 好男人社区资源 | 性色欲情网站iwww九文堂 | 妺妺窝人体色www在线小说 | 国产精品美女久久久网av | 日韩无套无码精品 | 日韩人妻无码中文字幕视频 | √天堂资源地址中文在线 | 成年美女黄网站色大免费视频 | 欧美老熟妇乱xxxxx | 久久人人97超碰a片精品 | 日韩亚洲欧美精品综合 | 在线a亚洲视频播放在线观看 | 男人扒开女人内裤强吻桶进去 | 久久精品国产日本波多野结衣 | 色妞www精品免费视频 | 对白脏话肉麻粗话av | 国产亲子乱弄免费视频 | 亚洲熟妇色xxxxx欧美老妇 | 娇妻被黑人粗大高潮白浆 | 国语精品一区二区三区 | 无码国内精品人妻少妇 | 久久午夜夜伦鲁鲁片无码免费 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产偷抇久久精品a片69 | 欧美野外疯狂做受xxxx高潮 | 久久精品成人欧美大片 | 婷婷综合久久中文字幕蜜桃三电影 | 7777奇米四色成人眼影 | 欧美国产日产一区二区 | 亚洲自偷自偷在线制服 | 人妻少妇精品视频专区 | 亚洲人成影院在线观看 | 国产精品亚洲综合色区韩国 | 欧美性黑人极品hd | 亚洲国产精品一区二区第一页 | 欧美xxxxx精品 | 高清国产亚洲精品自在久久 | 内射后入在线观看一区 | 中文字幕无码免费久久9一区9 | 精品久久久久香蕉网 | 久久亚洲精品中文字幕无男同 | 欧美人与牲动交xxxx | 男人扒开女人内裤强吻桶进去 | 国产一区二区三区四区五区加勒比 | 久久综合香蕉国产蜜臀av | 国产农村乱对白刺激视频 | 97人妻精品一区二区三区 | 300部国产真实乱 | 一本久久a久久精品vr综合 | 无遮挡啪啪摇乳动态图 | 成在人线av无码免观看麻豆 | 蜜臀av在线播放 久久综合激激的五月天 | 欧美日本日韩 | 激情五月综合色婷婷一区二区 | 国产精品99久久精品爆乳 | 男人和女人高潮免费网站 | 97久久精品无码一区二区 | 欧美性猛交xxxx富婆 | 精品无人区无码乱码毛片国产 | 99久久久无码国产aaa精品 | 无码中文字幕色专区 | 中文字幕日韩精品一区二区三区 | 熟妇人妻中文av无码 | 国产精品美女久久久 | 一二三四在线观看免费视频 | 欧美日韩一区二区免费视频 | 麻花豆传媒剧国产免费mv在线 | 亚洲精品成人av在线 | 日本丰满护士爆乳xxxx | 国产一区二区三区四区五区加勒比 | 亚洲の无码国产の无码步美 | 欧美阿v高清资源不卡在线播放 | 99久久久无码国产aaa精品 | 国产av人人夜夜澡人人爽麻豆 | 亚洲国产欧美在线成人 | 久久久国产精品无码免费专区 | 精品无码国产一区二区三区av | 中文字幕无线码免费人妻 | 国产偷抇久久精品a片69 | 久久综合给合久久狠狠狠97色 | 网友自拍区视频精品 | 欧美三级不卡在线观看 | 国产热a欧美热a在线视频 | 国产精品香蕉在线观看 | 久久综合狠狠综合久久综合88 | 青草青草久热国产精品 | 人人澡人摸人人添 | 国产乱人偷精品人妻a片 | 东京热无码av男人的天堂 | 人妻有码中文字幕在线 | 国产xxx69麻豆国语对白 | 无码任你躁久久久久久久 | 少妇人妻av毛片在线看 | 九九在线中文字幕无码 | 国内精品人妻无码久久久影院 | 国产黄在线观看免费观看不卡 | 色欲人妻aaaaaaa无码 | 性色欲情网站iwww九文堂 | 亚洲国产av精品一区二区蜜芽 | 欧美成人免费全部网站 | 无码帝国www无码专区色综合 | 三上悠亚人妻中文字幕在线 | 性生交大片免费看女人按摩摩 | 亚洲a无码综合a国产av中文 | 任你躁国产自任一区二区三区 | 国产午夜无码精品免费看 | 狂野欧美性猛xxxx乱大交 | 国产av无码专区亚洲awww | 免费观看的无遮挡av | 少妇被黑人到高潮喷出白浆 | 牲交欧美兽交欧美 | 欧美猛少妇色xxxxx | 免费无码肉片在线观看 | 久久精品人妻少妇一区二区三区 | 亚洲成a人片在线观看无码3d | 国产精品国产三级国产专播 | 妺妺窝人体色www婷婷 | 久久国产精品偷任你爽任你 | 天天燥日日燥 | 色窝窝无码一区二区三区色欲 | 中文无码成人免费视频在线观看 | 色诱久久久久综合网ywww | 粉嫩少妇内射浓精videos | 色婷婷综合中文久久一本 | 国产午夜精品一区二区三区嫩草 | 国产 精品 自在自线 | 国产精品第一区揄拍无码 | 兔费看少妇性l交大片免费 | 欧美老妇与禽交 | 国产色精品久久人妻 | 国产明星裸体无码xxxx视频 | 精品国产国产综合精品 | 亚洲精品一区三区三区在线观看 | 日本一卡二卡不卡视频查询 | 久久精品成人欧美大片 | 蜜臀av在线播放 久久综合激激的五月天 | 午夜丰满少妇性开放视频 | 四虎4hu永久免费 | 亚洲中文字幕无码中字 | 精品 日韩 国产 欧美 视频 | 亚洲一区二区三区含羞草 | 最新国产麻豆aⅴ精品无码 | 精品亚洲韩国一区二区三区 | 少妇久久久久久人妻无码 | 日韩无码专区 | 无人区乱码一区二区三区 | 亚洲欧洲日本综合aⅴ在线 | 少妇无码吹潮 | 色综合久久88色综合天天 | 国产农村乱对白刺激视频 | 国产亚洲精品久久久闺蜜 | 丰满肥臀大屁股熟妇激情视频 | 久久99国产综合精品 | 亚洲中文字幕久久无码 | 国产另类ts人妖一区二区 | 丰满肥臀大屁股熟妇激情视频 | 亚洲人成无码网www | 国产一区二区三区日韩精品 | 国产无遮挡又黄又爽免费视频 | 中文字幕亚洲情99在线 | 久久人妻内射无码一区三区 | 无码吃奶揉捏奶头高潮视频 | 麻豆国产丝袜白领秘书在线观看 | 国产乡下妇女做爰 | 激情人妻另类人妻伦 | 无码一区二区三区在线 | 国内少妇偷人精品视频免费 | 免费无码午夜福利片69 | 精品国产青草久久久久福利 | 国产av一区二区精品久久凹凸 | 18禁止看的免费污网站 | 天堂а√在线地址中文在线 | 久久国产精品_国产精品 | 在教室伦流澡到高潮hnp视频 | 中文字幕人妻无码一夲道 | 亚洲aⅴ无码成人网站国产app | 亚洲综合精品香蕉久久网 | 国产又爽又猛又粗的视频a片 | 色综合久久中文娱乐网 | 国产成人精品一区二区在线小狼 | 性欧美牲交xxxxx视频 | 精品夜夜澡人妻无码av蜜桃 | 性色av无码免费一区二区三区 | 成人aaa片一区国产精品 | 国产精品资源一区二区 | 人妻插b视频一区二区三区 | 成熟人妻av无码专区 | 国产97色在线 | 免 | 中文字幕精品av一区二区五区 | 日韩av无码一区二区三区 | 国产热a欧美热a在线视频 | 中文字幕+乱码+中文字幕一区 | 亚洲精品www久久久 | 四十如虎的丰满熟妇啪啪 | 亚洲综合久久一区二区 | 乱人伦中文视频在线观看 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 日本一区二区更新不卡 | 日韩精品无码一本二本三本色 | 天天躁夜夜躁狠狠是什么心态 | 亚洲の无码国产の无码影院 | 中文字幕无码免费久久9一区9 | 最新国产乱人伦偷精品免费网站 | 老熟妇仑乱视频一区二区 | 亚洲精品中文字幕乱码 | 国产午夜亚洲精品不卡 | √天堂中文官网8在线 | 乱码av麻豆丝袜熟女系列 | 成人无码精品一区二区三区 | 中文无码伦av中文字幕 | 性史性农村dvd毛片 | 国产欧美亚洲精品a | 久久99精品国产麻豆 | 永久免费观看国产裸体美女 | 内射欧美老妇wbb | 久久精品国产一区二区三区肥胖 | 成人无码精品一区二区三区 | 一本久久a久久精品亚洲 | 青青青手机频在线观看 | 四虎影视成人永久免费观看视频 | 九九久久精品国产免费看小说 | 精品熟女少妇av免费观看 | 人人妻人人澡人人爽欧美精品 | 人妻少妇精品久久 | www一区二区www免费 | 精品乱子伦一区二区三区 | 18黄暴禁片在线观看 | 一个人免费观看的www视频 | 久久精品中文字幕一区 | 无码av免费一区二区三区试看 | 一个人免费观看的www视频 | 国产深夜福利视频在线 | 无遮挡国产高潮视频免费观看 | 乱码午夜-极国产极内射 | aa片在线观看视频在线播放 | 国产精品久久久久9999小说 | 日日橹狠狠爱欧美视频 | 好爽又高潮了毛片免费下载 | 疯狂三人交性欧美 | 国产激情艳情在线看视频 | 无码吃奶揉捏奶头高潮视频 | 秋霞特色aa大片 | 久久99精品久久久久婷婷 | 搡女人真爽免费视频大全 | 国产无av码在线观看 | 日韩亚洲欧美中文高清在线 | 大肉大捧一进一出好爽视频 | 日本饥渴人妻欲求不满 | 中文精品久久久久人妻不卡 | 精品夜夜澡人妻无码av蜜桃 | 人妻与老人中文字幕 | 国产精品鲁鲁鲁 | 国产成人午夜福利在线播放 | 亚洲s码欧洲m码国产av | 色一情一乱一伦 | 一二三四在线观看免费视频 | 亚洲综合无码一区二区三区 | 国产亚洲精品久久久久久 | 国产精品免费大片 | 欧美成人家庭影院 | 亚洲日本一区二区三区在线 | 大肉大捧一进一出视频出来呀 | 天天躁日日躁狠狠躁免费麻豆 | 任你躁在线精品免费 | 免费国产成人高清在线观看网站 | a片在线免费观看 | 亚洲国产精品毛片av不卡在线 | 亚洲精品国偷拍自产在线观看蜜桃 | 中文字幕无码日韩欧毛 | 亚洲一区二区观看播放 | 99久久无码一区人妻 | 综合人妻久久一区二区精品 | 国产成人一区二区三区别 | 国内精品人妻无码久久久影院蜜桃 | 未满成年国产在线观看 | 国产猛烈高潮尖叫视频免费 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 国产精品福利视频导航 | 欧美精品国产综合久久 | 中文字幕无码热在线视频 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 狠狠色欧美亚洲狠狠色www | 国产一区二区三区日韩精品 | 一区二区三区高清视频一 | 婷婷丁香五月天综合东京热 | 日本va欧美va欧美va精品 | 婷婷五月综合缴情在线视频 | 少妇愉情理伦片bd | 18精品久久久无码午夜福利 | 国产午夜福利100集发布 | 免费人成网站视频在线观看 | 性做久久久久久久久 | 国产免费久久久久久无码 | 久久精品中文字幕大胸 | 午夜熟女插插xx免费视频 | 丰满少妇熟乱xxxxx视频 | 免费无码av一区二区 | ass日本丰满熟妇pics | 无码一区二区三区在线 | 最近免费中文字幕中文高清百度 | 亚洲乱码中文字幕在线 | 欧美 丝袜 自拍 制服 另类 | 亚洲七七久久桃花影院 | 熟妇女人妻丰满少妇中文字幕 | 日本一卡2卡3卡四卡精品网站 | 图片区 小说区 区 亚洲五月 | 日日摸日日碰夜夜爽av | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 久久精品国产一区二区三区肥胖 | 日韩在线不卡免费视频一区 | 国内精品一区二区三区不卡 | 色欲综合久久中文字幕网 | 精品偷自拍另类在线观看 | 欧美肥老太牲交大战 | 国产精品久久久午夜夜伦鲁鲁 | 狠狠综合久久久久综合网 | 色情久久久av熟女人妻网站 | 久久成人a毛片免费观看网站 | 亚洲精品美女久久久久久久 | 国产精品美女久久久 | 中文无码精品a∨在线观看不卡 | 狂野欧美性猛交免费视频 | 玩弄少妇高潮ⅹxxxyw | 欧美阿v高清资源不卡在线播放 | 性做久久久久久久久 | 久久99精品国产.久久久久 | 国语精品一区二区三区 | 亚洲伊人久久精品影院 | 丰满少妇熟乱xxxxx视频 | 日韩人妻少妇一区二区三区 | 色 综合 欧美 亚洲 国产 | 2020最新国产自产精品 | 国产 精品 自在自线 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 国产av无码专区亚洲a∨毛片 | 精品国产国产综合精品 | 任你躁国产自任一区二区三区 | 午夜精品久久久久久久久 | 99久久婷婷国产综合精品青草免费 | 小泽玛莉亚一区二区视频在线 | 久久97精品久久久久久久不卡 | 亚洲 高清 成人 动漫 | a在线亚洲男人的天堂 | 日本爽爽爽爽爽爽在线观看免 | 亚洲爆乳精品无码一区二区三区 | 亚洲中文字幕无码中文字在线 | aⅴ在线视频男人的天堂 | 风流少妇按摩来高潮 | 中文字幕av日韩精品一区二区 | 国产小呦泬泬99精品 | 国产又爽又猛又粗的视频a片 | 成 人 免费观看网站 | 成人av无码一区二区三区 | 久久国产劲爆∧v内射 | 激情综合激情五月俺也去 | 日本乱偷人妻中文字幕 | 国产精品久久国产三级国 | 成人女人看片免费视频放人 | 精品国偷自产在线 | 人妻插b视频一区二区三区 | 丰满少妇高潮惨叫视频 | a片在线免费观看 | 老司机亚洲精品影院 | 国产无套内射久久久国产 | 三级4级全黄60分钟 | 国产精品久久国产精品99 | 亚洲成色在线综合网站 | 国产两女互慰高潮视频在线观看 | 久久www免费人成人片 | 久久天天躁夜夜躁狠狠 | 三上悠亚人妻中文字幕在线 | 沈阳熟女露脸对白视频 | 撕开奶罩揉吮奶头视频 | 波多野结衣一区二区三区av免费 | 国产va免费精品观看 | 国产一区二区三区影院 | 国产综合久久久久鬼色 | 少妇性荡欲午夜性开放视频剧场 | 欧洲极品少妇 | 欧美老熟妇乱xxxxx | 美女毛片一区二区三区四区 | 日本一区二区更新不卡 | 四虎影视成人永久免费观看视频 | 亚洲第一网站男人都懂 | 国产一区二区三区精品视频 | 欧美黑人乱大交 | 亚洲熟妇自偷自拍另类 | 成 人 网 站国产免费观看 | 熟女俱乐部五十路六十路av | 麻豆成人精品国产免费 | 国产国语老龄妇女a片 | 成人三级无码视频在线观看 | 高中生自慰www网站 | 国产69精品久久久久app下载 | 性色av无码免费一区二区三区 | 国产又爽又猛又粗的视频a片 | 成在人线av无码免观看麻豆 | 蜜臀av在线播放 久久综合激激的五月天 | 少妇厨房愉情理9仑片视频 | 无码成人精品区在线观看 | 综合网日日天干夜夜久久 | 国产欧美精品一区二区三区 | 99精品无人区乱码1区2区3区 | 亚洲欧洲日本无在线码 | 成人免费视频一区二区 | 少妇一晚三次一区二区三区 | 欧美丰满熟妇xxxx性ppx人交 | 国产成人无码av在线影院 | 亚洲中文字幕在线无码一区二区 | 麻豆果冻传媒2021精品传媒一区下载 | 久久这里只有精品视频9 | 一本久久a久久精品亚洲 | 欧美黑人巨大xxxxx | 午夜福利电影 | 中文字幕乱码人妻无码久久 | 精品欧美一区二区三区久久久 | аⅴ资源天堂资源库在线 | 亚洲日韩av片在线观看 | 麻豆av传媒蜜桃天美传媒 | 在线亚洲高清揄拍自拍一品区 | 任你躁国产自任一区二区三区 | 中文字幕乱码中文乱码51精品 | 中文字幕中文有码在线 | 日日碰狠狠丁香久燥 | 精品国产成人一区二区三区 | 日韩少妇内射免费播放 | 国产激情无码一区二区 | 国产精品办公室沙发 | 老太婆性杂交欧美肥老太 | 久久久久av无码免费网 | 久久亚洲中文字幕无码 | 丰满少妇人妻久久久久久 | 亚洲色偷偷偷综合网 | 久久精品国产日本波多野结衣 | 真人与拘做受免费视频一 | 国产在线无码精品电影网 | 美女黄网站人色视频免费国产 | 草草网站影院白丝内射 | 日本乱人伦片中文三区 | 免费无码一区二区三区蜜桃大 | 青青久在线视频免费观看 | 美女扒开屁股让男人桶 | 精品久久久久久人妻无码中文字幕 | 国产在线一区二区三区四区五区 | 久久综合色之久久综合 | 久久国产36精品色熟妇 | 曰韩少妇内射免费播放 | 免费观看的无遮挡av | 久久久久99精品成人片 | 国产亚洲精品久久久久久久久动漫 | 一本色道久久综合亚洲精品不卡 | 久久精品一区二区三区四区 | 免费无码午夜福利片69 | 成人一区二区免费视频 | 六月丁香婷婷色狠狠久久 | 天干天干啦夜天干天2017 | 国产人妻久久精品二区三区老狼 | 国产亚洲精品久久久久久国模美 | 在线天堂新版最新版在线8 | 国产精品理论片在线观看 | 色 综合 欧美 亚洲 国产 | 久久精品国产99久久6动漫 | 亚洲成av人影院在线观看 | 国产特级毛片aaaaaaa高清 | 网友自拍区视频精品 | 妺妺窝人体色www在线小说 | 国产色视频一区二区三区 | 国产av剧情md精品麻豆 | 欧美亚洲日韩国产人成在线播放 | 黑人大群体交免费视频 | 久久无码专区国产精品s | 国产热a欧美热a在线视频 | 国产欧美精品一区二区三区 | 国产精品国产三级国产专播 | 国产精品久免费的黄网站 | 麻花豆传媒剧国产免费mv在线 | 亚洲国产精品久久久天堂 | 人妻夜夜爽天天爽三区 | 国产成人亚洲综合无码 | 国产精品无码一区二区桃花视频 | 成人一在线视频日韩国产 | 对白脏话肉麻粗话av | 中文字幕 亚洲精品 第1页 | 无码人妻出轨黑人中文字幕 | 成在人线av无码免费 | 青草视频在线播放 | 天天拍夜夜添久久精品大 | 在线视频网站www色 | 亚洲国产一区二区三区在线观看 | 亚洲精品一区二区三区大桥未久 | 丰满护士巨好爽好大乳 | 沈阳熟女露脸对白视频 | 成人亚洲精品久久久久软件 | 国产午夜精品一区二区三区嫩草 | 久久成人a毛片免费观看网站 | 少妇性荡欲午夜性开放视频剧场 | www国产精品内射老师 | 国产亚洲视频中文字幕97精品 | 亚洲熟女一区二区三区 | а√天堂www在线天堂小说 | 老熟妇仑乱视频一区二区 | 麻豆果冻传媒2021精品传媒一区下载 | 国产成人综合美国十次 | 少妇邻居内射在线 | 国产肉丝袜在线观看 | 红桃av一区二区三区在线无码av | 亚洲 欧美 激情 小说 另类 | 日韩人妻无码一区二区三区久久99 | 97夜夜澡人人爽人人喊中国片 | 性欧美熟妇videofreesex | 久久人妻内射无码一区三区 | 亚洲成a人片在线观看日本 | 久久久无码中文字幕久... | 国产一精品一av一免费 | 精品亚洲成av人在线观看 | 国产精品美女久久久 | 亚洲成a人片在线观看无码3d | 久久久久久a亚洲欧洲av冫 | 色综合久久久久综合一本到桃花网 | 成人亚洲精品久久久久软件 | 国产精品免费大片 | 亚洲男人av天堂午夜在 | 美女扒开屁股让男人桶 | 两性色午夜视频免费播放 | 无码国产色欲xxxxx视频 | 窝窝午夜理论片影院 | 欧美人与牲动交xxxx | 精品国产国产综合精品 | 人人澡人人妻人人爽人人蜜桃 | 伊人久久婷婷五月综合97色 | 精品厕所偷拍各类美女tp嘘嘘 | 精品无码av一区二区三区 | 欧洲vodafone精品性 | 熟女少妇人妻中文字幕 | 国产人妻精品一区二区三区不卡 | 国产在线aaa片一区二区99 | 亚洲人交乣女bbw | 乱人伦人妻中文字幕无码 | 国语精品一区二区三区 | 人妻少妇精品久久 | 中文亚洲成a人片在线观看 | 亚洲s色大片在线观看 | 成人免费视频在线观看 | 少妇高潮喷潮久久久影院 | 精品无码av一区二区三区 | 噜噜噜亚洲色成人网站 | 强辱丰满人妻hd中文字幕 | 精品欧美一区二区三区久久久 | 久久99精品久久久久久 | √8天堂资源地址中文在线 | 久久精品女人的天堂av | 国产黄在线观看免费观看不卡 | 国产精品久久久av久久久 | 天堂久久天堂av色综合 | 亚洲午夜久久久影院 | 麻豆蜜桃av蜜臀av色欲av | 亚洲理论电影在线观看 | 国产人妻人伦精品1国产丝袜 | 日韩av无码中文无码电影 | 国产成人一区二区三区别 | 人人妻人人澡人人爽欧美一区九九 | 精品无码一区二区三区爱欲 | 精品国产精品久久一区免费式 | yw尤物av无码国产在线观看 | 亚洲午夜福利在线观看 | 黑人粗大猛烈进出高潮视频 | 动漫av一区二区在线观看 | 亚洲精品欧美二区三区中文字幕 | 久久99精品国产.久久久久 | 国产乱人伦偷精品视频 | 亚洲春色在线视频 | 亚洲国产av美女网站 | 美女黄网站人色视频免费国产 | 免费人成网站视频在线观看 | 精品久久久中文字幕人妻 | 小泽玛莉亚一区二区视频在线 | 久久这里只有精品视频9 | 人妻有码中文字幕在线 | 无码av最新清无码专区吞精 | 国产欧美熟妇另类久久久 | 国产深夜福利视频在线 | 呦交小u女精品视频 | 亚洲另类伦春色综合小说 | 国产又粗又硬又大爽黄老大爷视 | 国产香蕉尹人综合在线观看 | 国产精品久免费的黄网站 | 国产午夜精品一区二区三区嫩草 | 免费国产成人高清在线观看网站 | 捆绑白丝粉色jk震动捧喷白浆 | 欧美精品一区二区精品久久 | 国产精品国产自线拍免费软件 | 久久精品国产一区二区三区 | 亚洲精品www久久久 | 亚洲精品欧美二区三区中文字幕 | 人人妻人人藻人人爽欧美一区 | 国产午夜亚洲精品不卡下载 | 国产在线精品一区二区高清不卡 | 2019午夜福利不卡片在线 | 国内精品久久毛片一区二区 | 性欧美牲交xxxxx视频 | 久久这里只有精品视频9 | 国产人妖乱国产精品人妖 | 日韩亚洲欧美中文高清在线 | 偷窥村妇洗澡毛毛多 | 欧洲精品码一区二区三区免费看 | 又湿又紧又大又爽a视频国产 | 日本精品人妻无码免费大全 | 亚洲乱码中文字幕在线 | 日本爽爽爽爽爽爽在线观看免 | 亚洲中文无码av永久不收费 | 国产午夜亚洲精品不卡 | 亚洲欧美色中文字幕在线 | 露脸叫床粗话东北少妇 | 久久亚洲精品中文字幕无男同 | 午夜精品久久久内射近拍高清 | 18禁黄网站男男禁片免费观看 | 国产精品久久久久7777 | 又大又硬又爽免费视频 | 天堂а√在线地址中文在线 | 草草网站影院白丝内射 | 精品国偷自产在线视频 | 福利一区二区三区视频在线观看 | 国产乱人无码伦av在线a | 98国产精品综合一区二区三区 | 亚洲a无码综合a国产av中文 | 丁香花在线影院观看在线播放 | 欧美 日韩 亚洲 在线 | 日日噜噜噜噜夜夜爽亚洲精品 | 国产精品毛片一区二区 | 日本成熟视频免费视频 | 国产一区二区三区影院 | 国产亚洲精品久久久久久 | 人妻有码中文字幕在线 | 国产福利视频一区二区 | 国产国语老龄妇女a片 | 玩弄人妻少妇500系列视频 | 亚洲熟妇色xxxxx欧美老妇 | 99久久久无码国产aaa精品 | 丰满少妇高潮惨叫视频 | 久久久久成人精品免费播放动漫 | av小次郎收藏 | 亚洲码国产精品高潮在线 | 久久午夜夜伦鲁鲁片无码免费 | 午夜嘿嘿嘿影院 | 成人无码精品一区二区三区 | 精品久久久久久人妻无码中文字幕 | 免费国产黄网站在线观看 | 99精品视频在线观看免费 | 日本成熟视频免费视频 | 亚洲日本在线电影 | 欧美日韩久久久精品a片 | 色婷婷综合中文久久一本 | 亚洲熟妇色xxxxx欧美老妇 | 亚洲综合久久一区二区 | 久久人人爽人人爽人人片av高清 | 久久99精品国产麻豆蜜芽 | 成人三级无码视频在线观看 | 无码纯肉视频在线观看 | 亚洲精品久久久久中文第一幕 | 亚洲人成影院在线无码按摩店 | 丝袜足控一区二区三区 | 老司机亚洲精品影院无码 | 久久午夜无码鲁丝片秋霞 | 日本饥渴人妻欲求不满 | 中文毛片无遮挡高清免费 | 性欧美牲交xxxxx视频 | 2020久久超碰国产精品最新 | 狠狠色丁香久久婷婷综合五月 | 国产精品a成v人在线播放 | 久久精品国产一区二区三区肥胖 | 国产无套内射久久久国产 | 精品久久久无码人妻字幂 | 一二三四在线观看免费视频 | 奇米综合四色77777久久 东京无码熟妇人妻av在线网址 | 国产精品怡红院永久免费 | 国产亚洲精品久久久闺蜜 | 久久五月精品中文字幕 | 国产精品久免费的黄网站 | 中国女人内谢69xxxxxa片 | 国产成人精品必看 | 亚洲精品午夜国产va久久成人 | 亚洲熟妇色xxxxx亚洲 | 亚洲 a v无 码免 费 成 人 a v | 18禁黄网站男男禁片免费观看 | 国产女主播喷水视频在线观看 | 东京无码熟妇人妻av在线网址 | 亚洲熟妇色xxxxx亚洲 | 欧美日韩一区二区免费视频 | 亚洲区欧美区综合区自拍区 | 婷婷五月综合激情中文字幕 | 日本在线高清不卡免费播放 | 国产成人无码av在线影院 | 图片小说视频一区二区 | 亚洲成av人综合在线观看 | 欧美日韩一区二区免费视频 | 装睡被陌生人摸出水好爽 | 狠狠cao日日穞夜夜穞av | 亚洲一区二区观看播放 | 美女黄网站人色视频免费国产 | 精品久久久中文字幕人妻 | 国产乱码精品一品二品 | 丰满人妻一区二区三区免费视频 | √天堂中文官网8在线 | 中文字幕亚洲情99在线 | 国产成人无码一二三区视频 | 在线观看国产一区二区三区 | 亚洲国产欧美日韩精品一区二区三区 | 天堂久久天堂av色综合 | 亚洲欧美国产精品专区久久 | 久久五月精品中文字幕 | 人人妻人人澡人人爽人人精品 | 国产激情无码一区二区app | 久久伊人色av天堂九九小黄鸭 | 国产又粗又硬又大爽黄老大爷视 | 无码精品国产va在线观看dvd | 国产熟女一区二区三区四区五区 | 国产一区二区三区影院 | 精品国产一区二区三区四区在线看 | 亚洲热妇无码av在线播放 | 性开放的女人aaa片 | av在线亚洲欧洲日产一区二区 | 青青青爽视频在线观看 | 国产精品第一区揄拍无码 | 亚洲精品成人av在线 | 国产激情无码一区二区 | 中文亚洲成a人片在线观看 | 亚洲一区二区三区四区 | 乱中年女人伦av三区 | 美女极度色诱视频国产 | 久久久无码中文字幕久... | 性欧美牲交xxxxx视频 | 国产激情精品一区二区三区 | 欧美野外疯狂做受xxxx高潮 | 强奷人妻日本中文字幕 | 亚洲另类伦春色综合小说 | 久久婷婷五月综合色国产香蕉 | 亚洲国产精品一区二区美利坚 | 精品成在人线av无码免费看 | 国产亚洲视频中文字幕97精品 | 小鲜肉自慰网站xnxx | 久久zyz资源站无码中文动漫 | 精品无码一区二区三区的天堂 | 全球成人中文在线 | 久久精品国产精品国产精品污 | 亚洲 欧美 激情 小说 另类 | 三上悠亚人妻中文字幕在线 | 国产精品嫩草久久久久 | 小泽玛莉亚一区二区视频在线 | 思思久久99热只有频精品66 | 18精品久久久无码午夜福利 | 色情久久久av熟女人妻网站 | 精品国产av色一区二区深夜久久 | 天下第一社区视频www日本 | 欧美日韩综合一区二区三区 | 国产欧美亚洲精品a | 色欲久久久天天天综合网精品 | 婷婷丁香五月天综合东京热 | 日本乱偷人妻中文字幕 | 色欲人妻aaaaaaa无码 | 亚洲精品一区二区三区大桥未久 | 装睡被陌生人摸出水好爽 | 无码成人精品区在线观看 | 国产成人无码午夜视频在线观看 | 亚洲爆乳精品无码一区二区三区 | 99久久久国产精品无码免费 | 久久久精品欧美一区二区免费 | 国产绳艺sm调教室论坛 | 国产极品美女高潮无套在线观看 | 免费视频欧美无人区码 | 国产成人精品优优av | 精品久久8x国产免费观看 | 久久久久成人精品免费播放动漫 | 欧美一区二区三区视频在线观看 | 久久精品丝袜高跟鞋 | 国产舌乚八伦偷品w中 | 高潮喷水的毛片 | 国产电影无码午夜在线播放 | 久久久久成人片免费观看蜜芽 | 国产激情一区二区三区 | 东京热男人av天堂 | 亚洲综合无码久久精品综合 | 精品亚洲成av人在线观看 | 亚洲精品国偷拍自产在线麻豆 | 无码毛片视频一区二区本码 | 亚洲精品国偷拍自产在线麻豆 | 亚洲综合在线一区二区三区 | 国产亚洲精品久久久久久大师 | 无码av中文字幕免费放 | 国产美女精品一区二区三区 | 精品无码国产一区二区三区av | 色妞www精品免费视频 | 日本免费一区二区三区最新 | 亚洲午夜福利在线观看 | 麻豆成人精品国产免费 | 麻豆精品国产精华精华液好用吗 | 成人免费无码大片a毛片 | 两性色午夜视频免费播放 | 牲交欧美兽交欧美 | 无码av免费一区二区三区试看 | 亚洲综合色区中文字幕 | 日韩无码专区 | 国产欧美精品一区二区三区 | 国产精品va在线播放 | 蜜桃臀无码内射一区二区三区 | 狠狠色噜噜狠狠狠7777奇米 | 日本护士毛茸茸高潮 | 国产真人无遮挡作爱免费视频 | 十八禁真人啪啪免费网站 | 国产精品久久久午夜夜伦鲁鲁 | 色欲久久久天天天综合网精品 | 野外少妇愉情中文字幕 | 欧美国产亚洲日韩在线二区 | 亚洲精品一区三区三区在线观看 | 国产69精品久久久久app下载 | 亚洲成av人片天堂网无码】 | 久久精品一区二区三区四区 | 扒开双腿吃奶呻吟做受视频 | 97夜夜澡人人爽人人喊中国片 | 无遮挡国产高潮视频免费观看 | 久久久婷婷五月亚洲97号色 | 国产精品久免费的黄网站 | 欧美亚洲日韩国产人成在线播放 | 国产真人无遮挡作爱免费视频 | 久久久亚洲欧洲日产国码αv | 欧美人与物videos另类 | 久久综合九色综合97网 | 日韩精品久久久肉伦网站 | 色婷婷久久一区二区三区麻豆 | 乱人伦人妻中文字幕无码久久网 | 少妇性l交大片欧洲热妇乱xxx | 国产亲子乱弄免费视频 | 蜜桃视频插满18在线观看 | 国产亚av手机在线观看 | 国产午夜无码视频在线观看 | 97精品人妻一区二区三区香蕉 | 中文字幕亚洲情99在线 | 精品欧美一区二区三区久久久 | 三上悠亚人妻中文字幕在线 | 偷窥日本少妇撒尿chinese | 亚洲の无码国产の无码影院 | 久久99精品久久久久久动态图 | 色一情一乱一伦一视频免费看 | 久久久久久久女国产乱让韩 | 99re在线播放 | 色婷婷欧美在线播放内射 | 国产色视频一区二区三区 | 国产人妻人伦精品 | 亚洲精品综合五月久久小说 | a在线亚洲男人的天堂 | 99精品视频在线观看免费 | 55夜色66夜色国产精品视频 | 乱人伦中文视频在线观看 | 国产欧美熟妇另类久久久 | 免费人成在线观看网站 | 亚洲精品中文字幕久久久久 | 国产亚洲精品久久久ai换 | 亚洲熟妇色xxxxx亚洲 | 大肉大捧一进一出好爽视频 | 九九热爱视频精品 | 青青草原综合久久大伊人精品 | 欧美日韩人成综合在线播放 | 亚洲中文字幕在线观看 | 欧美激情综合亚洲一二区 | 国产肉丝袜在线观看 | 日韩人妻无码一区二区三区久久99 | 极品嫩模高潮叫床 | 老司机亚洲精品影院 | 特级做a爰片毛片免费69 | 国产精品久久久久久亚洲影视内衣 | 任你躁在线精品免费 | 日韩人妻无码中文字幕视频 | 久久亚洲精品成人无码 | 大屁股大乳丰满人妻 | 爱做久久久久久 | 麻豆av传媒蜜桃天美传媒 | 玩弄少妇高潮ⅹxxxyw | 噜噜噜亚洲色成人网站 | 色婷婷av一区二区三区之红樱桃 | 日本成熟视频免费视频 | 高潮毛片无遮挡高清免费视频 | 伊在人天堂亚洲香蕉精品区 | 国产午夜视频在线观看 | 久久天天躁狠狠躁夜夜免费观看 | 偷窥村妇洗澡毛毛多 | 亚洲中文字幕成人无码 | 国语自产偷拍精品视频偷 | 大肉大捧一进一出好爽视频 | 亚洲精品综合五月久久小说 | 亚洲性无码av中文字幕 | 免费观看又污又黄的网站 | 无码成人精品区在线观看 | 日韩欧美成人免费观看 | 领导边摸边吃奶边做爽在线观看 | 国产办公室秘书无码精品99 | 国产另类ts人妖一区二区 | 久久zyz资源站无码中文动漫 | 亚洲区欧美区综合区自拍区 | 色一情一乱一伦一区二区三欧美 | 亚洲综合精品香蕉久久网 | 亚洲熟妇自偷自拍另类 | 日韩精品无码免费一区二区三区 | 国产深夜福利视频在线 | 免费播放一区二区三区 | 久久久久久国产精品无码下载 | 中文字幕人妻无码一夲道 | 国内少妇偷人精品视频 | 青青青手机频在线观看 | 免费乱码人妻系列无码专区 | 人妻人人添人妻人人爱 | 欧美怡红院免费全部视频 | 欧美老妇与禽交 | 国产真实伦对白全集 | 国产无遮挡又黄又爽又色 | 九九综合va免费看 | 在线播放无码字幕亚洲 | 亚洲精品午夜国产va久久成人 | 漂亮人妻洗澡被公强 日日躁 | 国产亚洲精品久久久ai换 | 欧美放荡的少妇 | 亚洲欧洲无卡二区视頻 | 久久精品国产99久久6动漫 | 特大黑人娇小亚洲女 | 欧美猛少妇色xxxxx | 欧美第一黄网免费网站 | 亚洲热妇无码av在线播放 | 中文精品无码中文字幕无码专区 | 麻豆精品国产精华精华液好用吗 | 久久久久久九九精品久 | 色窝窝无码一区二区三区色欲 | 无码人妻丰满熟妇区毛片18 | 亚洲日韩av一区二区三区中文 | 亚洲成av人在线观看网址 | 久久久精品欧美一区二区免费 | 亚洲欧美色中文字幕在线 | 黑人玩弄人妻中文在线 | 成人aaa片一区国产精品 | www国产亚洲精品久久网站 | 欧洲精品码一区二区三区免费看 | 亚洲色在线无码国产精品不卡 | 国产69精品久久久久app下载 | 精品人妻人人做人人爽 | 日韩人妻无码一区二区三区久久99 | 亚洲精品久久久久久久久久久 | 亚洲自偷精品视频自拍 | 少妇一晚三次一区二区三区 | 国产精品久久久久影院嫩草 | 沈阳熟女露脸对白视频 | 5858s亚洲色大成网站www | 亚洲欧美日韩综合久久久 | 中文字幕无码免费久久99 | 少妇无码一区二区二三区 | 宝宝好涨水快流出来免费视频 | 又大又黄又粗又爽的免费视频 | 久久人人爽人人人人片 | 亚洲综合在线一区二区三区 | 亚洲一区二区观看播放 | 波多野结衣乳巨码无在线观看 | 乱码av麻豆丝袜熟女系列 | 激情亚洲一区国产精品 | 少妇高潮一区二区三区99 | 老子影院午夜精品无码 | 亚洲综合在线一区二区三区 | 娇妻被黑人粗大高潮白浆 | 老子影院午夜伦不卡 | 夜先锋av资源网站 | 亚洲日本在线电影 | 丰满岳乱妇在线观看中字无码 | 久久久亚洲欧洲日产国码αv | 日本护士毛茸茸高潮 | 樱花草在线社区www | 国产精品亚洲一区二区三区喷水 | 一本久久a久久精品亚洲 | 中文字幕无码热在线视频 | 亚洲日韩av一区二区三区四区 | 中文字幕人妻无码一区二区三区 | 久久综合色之久久综合 | 亚洲精品成人福利网站 | 久9re热视频这里只有精品 | 国产亚洲精品久久久ai换 | 国产精品鲁鲁鲁 | 久久午夜夜伦鲁鲁片无码免费 | 国产亚洲精品精品国产亚洲综合 | 奇米影视7777久久精品人人爽 | 乱人伦人妻中文字幕无码 | 国产精品久久久午夜夜伦鲁鲁 | 亚洲 a v无 码免 费 成 人 a v | 一个人看的www免费视频在线观看 | 人妻无码αv中文字幕久久琪琪布 | 精品无码一区二区三区爱欲 | 性生交大片免费看女人按摩摩 | 日韩人妻少妇一区二区三区 | 人妻插b视频一区二区三区 | 国产精品亚洲综合色区韩国 | 自拍偷自拍亚洲精品被多人伦好爽 | 亚洲aⅴ无码成人网站国产app | 中国女人内谢69xxxxxa片 | 国产精品人人爽人人做我的可爱 | 乱人伦人妻中文字幕无码久久网 | 无码人妻丰满熟妇区毛片18 | 欧美人与牲动交xxxx | 98国产精品综合一区二区三区 | 女高中生第一次破苞av | 国产手机在线αⅴ片无码观看 | 婷婷综合久久中文字幕蜜桃三电影 | 99久久久无码国产精品免费 | 欧美乱妇无乱码大黄a片 | 国产精品毛片一区二区 | 中文字幕无线码免费人妻 | 女人被爽到呻吟gif动态图视看 | 中文字幕无线码 | 欧美日韩人成综合在线播放 | 国产suv精品一区二区五 | 成年美女黄网站色大免费视频 | 精品国产乱码久久久久乱码 | 中文字幕乱码人妻二区三区 | 日本护士xxxxhd少妇 | 在教室伦流澡到高潮hnp视频 | 亚洲国产精品久久久天堂 | 亚洲乱码国产乱码精品精 | 少妇性l交大片欧洲热妇乱xxx | 国产99久久精品一区二区 | 免费视频欧美无人区码 | 内射欧美老妇wbb | 午夜福利不卡在线视频 | 亚洲国产精品久久久久久 | 九月婷婷人人澡人人添人人爽 | 亚洲国产成人a精品不卡在线 | 亚洲国产精品无码一区二区三区 | 国产午夜亚洲精品不卡下载 | 国产后入清纯学生妹 | 国产高清不卡无码视频 | 天堂а√在线中文在线 | 内射老妇bbwx0c0ck | 妺妺窝人体色www在线小说 | 天天燥日日燥 | 97精品人妻一区二区三区香蕉 | 国产极品视觉盛宴 | 午夜嘿嘿嘿影院 | 亚洲一区二区三区无码久久 | 无遮无挡爽爽免费视频 | 无码人妻少妇伦在线电影 | 欧美性黑人极品hd | 波多野结衣乳巨码无在线观看 | 性史性农村dvd毛片 | 97久久国产亚洲精品超碰热 | 成人欧美一区二区三区黑人免费 | 色老头在线一区二区三区 | 妺妺窝人体色www在线小说 | 精品久久久久久人妻无码中文字幕 | 人妻天天爽夜夜爽一区二区 | 人妻与老人中文字幕 | 亚洲s色大片在线观看 | 国产农村妇女高潮大叫 | 国产av人人夜夜澡人人爽麻豆 | 亚洲 激情 小说 另类 欧美 | 牲欲强的熟妇农村老妇女 | 丁香花在线影院观看在线播放 | 在线看片无码永久免费视频 | 少妇人妻大乳在线视频 | 国产色xx群视频射精 | 欧美成人免费全部网站 | 18禁黄网站男男禁片免费观看 | 清纯唯美经典一区二区 | 成人亚洲精品久久久久软件 | 亚洲性无码av中文字幕 | 精品国精品国产自在久国产87 | 国产人妻人伦精品 | 欧美日韩人成综合在线播放 | 亚洲精品中文字幕 | 国产在热线精品视频 | 澳门永久av免费网站 | 国产午夜手机精彩视频 | 中文字幕无线码免费人妻 | 四十如虎的丰满熟妇啪啪 | 人妻少妇被猛烈进入中文字幕 | 亚洲а∨天堂久久精品2021 | 乱码午夜-极国产极内射 | 亚洲中文字幕在线观看 | 亚洲一区二区三区含羞草 | 色一情一乱一伦 | 久久国产精品偷任你爽任你 | 亚洲国产精品成人久久蜜臀 | 国产精品久久久久无码av色戒 | 久久久无码中文字幕久... | 伊在人天堂亚洲香蕉精品区 | 无套内谢的新婚少妇国语播放 | 亚洲精品国产精品乱码不卡 | 中文字幕 亚洲精品 第1页 | 丰腴饱满的极品熟妇 | 一个人免费观看的www视频 | 樱花草在线播放免费中文 | 国产精品办公室沙发 | 老子影院午夜伦不卡 | 牲欲强的熟妇农村老妇女 | 天天拍夜夜添久久精品大 | 色一情一乱一伦 | 人人超人人超碰超国产 | 亚洲精品久久久久久一区二区 | 色爱情人网站 | 亚洲性无码av中文字幕 | 日本熟妇乱子伦xxxx | 日本一区二区三区免费高清 | 粉嫩少妇内射浓精videos | 狠狠噜狠狠狠狠丁香五月 | 欧美黑人性暴力猛交喷水 | 九九在线中文字幕无码 | 亚拍精品一区二区三区探花 | 久久国产精品精品国产色婷婷 | 精品一区二区三区波多野结衣 | 成在人线av无码免费 | 色综合久久久无码网中文 | 久久精品中文字幕大胸 | 欧美日韩人成综合在线播放 | 精品无人区无码乱码毛片国产 | 亚洲综合另类小说色区 | 97久久精品无码一区二区 | 永久免费精品精品永久-夜色 | 日韩无套无码精品 | 丰满肥臀大屁股熟妇激情视频 | 久久亚洲日韩精品一区二区三区 | 亚洲成a人片在线观看无码3d | 久久视频在线观看精品 | 真人与拘做受免费视频一 | 亚洲色大成网站www国产 | 秋霞成人午夜鲁丝一区二区三区 | 精品偷自拍另类在线观看 | 强辱丰满人妻hd中文字幕 | 精品人妻人人做人人爽夜夜爽 | 成人亚洲精品久久久久 | 久久精品国产99精品亚洲 | 最新版天堂资源中文官网 | 亚洲中文字幕av在天堂 | 成年女人永久免费看片 | 国产成人一区二区三区别 | 亚洲国产综合无码一区 | 亚洲中文字幕无码中字 | 国产尤物精品视频 | 日本熟妇人妻xxxxx人hd | 丰满人妻精品国产99aⅴ | 久久久精品国产sm最大网站 | 曰本女人与公拘交酡免费视频 | 一本久道高清无码视频 | 51国偷自产一区二区三区 | 高清不卡一区二区三区 | 婷婷色婷婷开心五月四房播播 | 国产莉萝无码av在线播放 | 荫蒂添的好舒服视频囗交 | 日韩人妻少妇一区二区三区 | 久久97精品久久久久久久不卡 | 亚洲精品成人福利网站 | 97夜夜澡人人爽人人喊中国片 | 久久人人爽人人爽人人片av高清 | 麻花豆传媒剧国产免费mv在线 | 色 综合 欧美 亚洲 国产 | 无码一区二区三区在线 | 精品无码av一区二区三区 | 国产精品无码成人午夜电影 | 内射欧美老妇wbb | 欧美成人午夜精品久久久 | 日日干夜夜干 | 日韩精品无码一本二本三本色 | 任你躁国产自任一区二区三区 | 亚洲日韩精品欧美一区二区 | 4hu四虎永久在线观看 | 日本饥渴人妻欲求不满 | 亚洲乱码中文字幕在线 | 成人欧美一区二区三区黑人 | 人人妻人人澡人人爽人人精品 | 色 综合 欧美 亚洲 国产 | av无码电影一区二区三区 | 久久99精品久久久久婷婷 | 学生妹亚洲一区二区 | 丰满少妇人妻久久久久久 | 青春草在线视频免费观看 | 欧美亚洲日韩国产人成在线播放 | 日本熟妇大屁股人妻 | 亚洲精品国产第一综合99久久 | 国产舌乚八伦偷品w中 | 波多野42部无码喷潮在线 | 麻豆国产人妻欲求不满 | 永久免费精品精品永久-夜色 | 好男人www社区 | 亚洲国产精品无码久久久久高潮 | 欧美熟妇另类久久久久久不卡 | 任你躁在线精品免费 | 亚洲国产欧美国产综合一区 | 免费观看的无遮挡av | 午夜无码人妻av大片色欲 | 精品国产乱码久久久久乱码 | 成人aaa片一区国产精品 | 天堂在线观看www | 中文字幕人成乱码熟女app | 国产日产欧产精品精品app | 乱人伦人妻中文字幕无码 | 日韩精品一区二区av在线 | 沈阳熟女露脸对白视频 | 国产人妻精品一区二区三区不卡 | 亚洲精品无码人妻无码 | 色偷偷人人澡人人爽人人模 | 国产精品无码mv在线观看 | 精品国产一区二区三区四区在线看 | 欧美激情内射喷水高潮 | 国产又爽又猛又粗的视频a片 | 激情人妻另类人妻伦 | 日日麻批免费40分钟无码 | 久久久久se色偷偷亚洲精品av | 精品久久久久久人妻无码中文字幕 | 天天躁日日躁狠狠躁免费麻豆 | 天天拍夜夜添久久精品 | 久久成人a毛片免费观看网站 | 无码人妻精品一区二区三区不卡 | 丁香啪啪综合成人亚洲 | 麻花豆传媒剧国产免费mv在线 | 18无码粉嫩小泬无套在线观看 | 国内老熟妇对白xxxxhd | 色综合久久久久综合一本到桃花网 | 午夜成人1000部免费视频 | 天天做天天爱天天爽综合网 | 帮老师解开蕾丝奶罩吸乳网站 | 久激情内射婷内射蜜桃人妖 | www国产亚洲精品久久久日本 | 午夜福利电影 | 小泽玛莉亚一区二区视频在线 | 亚洲色大成网站www | 欧美老人巨大xxxx做受 | 国产精品爱久久久久久久 | 麻豆av传媒蜜桃天美传媒 | 奇米影视7777久久精品 | 少妇厨房愉情理9仑片视频 | 综合网日日天干夜夜久久 | 香港三级日本三级妇三级 | 久久国内精品自在自线 | 亚洲国产午夜精品理论片 | 超碰97人人做人人爱少妇 | 丝袜美腿亚洲一区二区 | 一本久道久久综合婷婷五月 | 无码午夜成人1000部免费视频 | 日本大乳高潮视频在线观看 | 日本精品少妇一区二区三区 | 精品欧洲av无码一区二区三区 | 99久久久无码国产精品免费 | 亚洲乱码国产乱码精品精 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲中文无码av永久不收费 | 日韩欧美成人免费观看 | 六月丁香婷婷色狠狠久久 | 秋霞成人午夜鲁丝一区二区三区 | 亚洲精品无码人妻无码 | 欧美日韩在线亚洲综合国产人 | 久久久久久av无码免费看大片 | 日韩精品成人一区二区三区 | 日韩精品久久久肉伦网站 | 亚洲中文字幕在线观看 | 欧美日韩精品 | 日韩人妻少妇一区二区三区 | 丰满少妇人妻久久久久久 | 女人被爽到呻吟gif动态图视看 | 国产人妻精品一区二区三区不卡 | 67194成是人免费无码 | 日本护士xxxxhd少妇 | 亚洲乱亚洲乱妇50p | 一本无码人妻在中文字幕免费 | 亚洲精品欧美二区三区中文字幕 | а天堂中文在线官网 | 亚洲国产精品毛片av不卡在线 | 99久久亚洲精品无码毛片 | 亚洲国产精品无码一区二区三区 | 精品人妻中文字幕有码在线 | 国产区女主播在线观看 | 亚洲aⅴ无码成人网站国产app | 图片区 小说区 区 亚洲五月 | 欧美日韩久久久精品a片 | 2020最新国产自产精品 | 国产一精品一av一免费 | 亚洲成a人片在线观看日本 | 亚洲国产av美女网站 | 国产超碰人人爽人人做人人添 | 又湿又紧又大又爽a视频国产 | 欧美日韩一区二区三区自拍 | 精品一区二区三区波多野结衣 | 国产亚洲欧美日韩亚洲中文色 | 日日摸天天摸爽爽狠狠97 | 午夜精品一区二区三区在线观看 | 日本熟妇大屁股人妻 | 亚洲一区二区三区在线观看网站 | 国产亚洲精品久久久ai换 | 欧美黑人巨大xxxxx | 国产一精品一av一免费 | 又湿又紧又大又爽a视频国产 | 久久精品中文字幕一区 | а√资源新版在线天堂 | 蜜臀av在线观看 在线欧美精品一区二区三区 | 国产精品高潮呻吟av久久4虎 | 日韩亚洲欧美精品综合 | 一二三四在线观看免费视频 | 少妇激情av一区二区 | 亚洲精品一区二区三区四区五区 | 欧美日本精品一区二区三区 | 午夜精品久久久内射近拍高清 | 四虎国产精品免费久久 | 88国产精品欧美一区二区三区 | 国产手机在线αⅴ片无码观看 | 亚洲综合久久一区二区 | 国产成人综合色在线观看网站 | 疯狂三人交性欧美 | 国产精品人人爽人人做我的可爱 | 国内精品人妻无码久久久影院 | 青青草原综合久久大伊人精品 | 国产深夜福利视频在线 | 国产片av国语在线观看 | 老子影院午夜伦不卡 | 欧美性生交活xxxxxdddd | 国产美女极度色诱视频www | 久久天天躁狠狠躁夜夜免费观看 | 亚洲成a人片在线观看日本 | 亚洲狠狠婷婷综合久久 | 久久久精品成人免费观看 | 熟妇女人妻丰满少妇中文字幕 | 国产亚洲美女精品久久久2020 | 亚洲毛片av日韩av无码 | 国产九九九九九九九a片 | 国产午夜视频在线观看 | 亚洲国产综合无码一区 | 亚洲精品国偷拍自产在线麻豆 | 欧美日本免费一区二区三区 | 55夜色66夜色国产精品视频 | 亚洲狠狠婷婷综合久久 | 久久久久se色偷偷亚洲精品av | 国产高清不卡无码视频 | 国产精品无码一区二区桃花视频 | 欧洲欧美人成视频在线 | 精品无码国产一区二区三区av | 丰满人妻精品国产99aⅴ | 亚洲日韩精品欧美一区二区 | 日本乱偷人妻中文字幕 | 久久综合九色综合欧美狠狠 | 精品人妻中文字幕有码在线 | 免费观看激色视频网站 | 在线观看免费人成视频 | 一本久道久久综合婷婷五月 | 玩弄中年熟妇正在播放 | 性欧美熟妇videofreesex | 色妞www精品免费视频 | 99er热精品视频 | 成人无码视频在线观看网站 | 在线a亚洲视频播放在线观看 | 国产99久久精品一区二区 | 成人综合网亚洲伊人 | 伊人久久大香线蕉亚洲 | 免费观看激色视频网站 | 精品国产成人一区二区三区 | 免费无码一区二区三区蜜桃大 | 国产亚洲精品精品国产亚洲综合 | 亚洲色www成人永久网址 | 97精品国产97久久久久久免费 | 网友自拍区视频精品 | 亚洲欧美综合区丁香五月小说 | 国产一区二区三区精品视频 | 六月丁香婷婷色狠狠久久 | 亚洲毛片av日韩av无码 | 狂野欧美性猛xxxx乱大交 | 国产人成高清在线视频99最全资源 | 成人性做爰aaa片免费看不忠 | 成人无码精品1区2区3区免费看 | 中文字幕+乱码+中文字幕一区 | 国产亚洲精品久久久久久久 | 国产精品久久久久久久影院 | 少妇高潮一区二区三区99 | 又紧又大又爽精品一区二区 | 人人妻人人澡人人爽精品欧美 | 欧洲vodafone精品性 | 久久国产精品二国产精品 | 激情综合激情五月俺也去 | 天天做天天爱天天爽综合网 | 精品日本一区二区三区在线观看 | 奇米影视888欧美在线观看 | 色欲综合久久中文字幕网 | 亚洲色欲色欲欲www在线 | 欧美成人家庭影院 | 55夜色66夜色国产精品视频 | 国内老熟妇对白xxxxhd | 俺去俺来也在线www色官网 | 亚洲综合久久一区二区 | 98国产精品综合一区二区三区 | 人妻少妇被猛烈进入中文字幕 | 亚洲aⅴ无码成人网站国产app | 丰满少妇弄高潮了www | 久久精品国产精品国产精品污 | 日本护士毛茸茸高潮 | 国产精品国产自线拍免费软件 | 亚洲国产欧美日韩精品一区二区三区 | 国产成人精品视频ⅴa片软件竹菊 | 又湿又紧又大又爽a视频国产 | 亚洲色大成网站www国产 | 少妇厨房愉情理9仑片视频 | √天堂资源地址中文在线 | 国内揄拍国内精品少妇国语 | 一个人看的www免费视频在线观看 | 秋霞成人午夜鲁丝一区二区三区 | 久久久精品人妻久久影视 | 国产无套内射久久久国产 | 亚洲成a人一区二区三区 | 亚洲日韩精品欧美一区二区 | 少妇被粗大的猛进出69影院 | 九月婷婷人人澡人人添人人爽 | 曰本女人与公拘交酡免费视频 | 国产免费久久精品国产传媒 | 人人妻人人澡人人爽精品欧美 | 无码人中文字幕 | 国产 浪潮av性色四虎 | 沈阳熟女露脸对白视频 | 久久99国产综合精品 | 成人综合网亚洲伊人 | 亚洲男人av香蕉爽爽爽爽 | 97久久精品无码一区二区 | 人妻少妇被猛烈进入中文字幕 | 日日天干夜夜狠狠爱 | 免费无码av一区二区 | 久久99精品国产.久久久久 | 亚洲国产成人a精品不卡在线 | 在线亚洲高清揄拍自拍一品区 | 精品国产一区二区三区四区 | 熟妇人妻无码xxx视频 | 亚洲 日韩 欧美 成人 在线观看 | 欧美精品无码一区二区三区 | 波多野结衣高清一区二区三区 | 久久国产36精品色熟妇 | 日本一卡2卡3卡四卡精品网站 | 国产精品久久久久影院嫩草 | 国产福利视频一区二区 | 中文字幕 亚洲精品 第1页 | 亚洲国产精品无码一区二区三区 | 色诱久久久久综合网ywww | 国产真实乱对白精彩久久 | 国产亚洲欧美日韩亚洲中文色 | 久久国产36精品色熟妇 | 欧美 日韩 人妻 高清 中文 | 俺去俺来也www色官网 | 中文字幕无码av激情不卡 | 国产成人无码专区 | 又色又爽又黄的美女裸体网站 | 中文字幕乱码亚洲无线三区 | 日日躁夜夜躁狠狠躁 | 老司机亚洲精品影院无码 | 日本www一道久久久免费榴莲 | a在线亚洲男人的天堂 | 老子影院午夜精品无码 | 国产成人无码午夜视频在线观看 | 亚洲最大成人网站 | 真人与拘做受免费视频一 | 免费播放一区二区三区 | 欧美激情综合亚洲一二区 | 久久久久se色偷偷亚洲精品av | 国产精品va在线播放 | 国产精品va在线播放 | 国产亚洲精品久久久闺蜜 | 国产精品永久免费视频 | 国产尤物精品视频 | 国产又爽又黄又刺激的视频 | 成年美女黄网站色大免费视频 | 亚洲精品鲁一鲁一区二区三区 | 乱人伦人妻中文字幕无码 | 国产精品无码一区二区三区不卡 | 国产尤物精品视频 | 男女性色大片免费网站 | 亚洲日本va中文字幕 | 人妻有码中文字幕在线 | 亚洲国产高清在线观看视频 | а天堂中文在线官网 | 性色欲情网站iwww九文堂 | 亚洲色偷偷男人的天堂 | 成 人 网 站国产免费观看 | 99国产精品白浆在线观看免费 | 国产女主播喷水视频在线观看 | 久久精品国产一区二区三区肥胖 | 国产成人无码区免费内射一片色欲 | 亚洲阿v天堂在线 | 精品国产精品久久一区免费式 | 亚洲精品久久久久avwww潮水 | 无码成人精品区在线观看 | 成年美女黄网站色大免费全看 | 国产在线精品一区二区三区直播 | 国产精品无码久久av | 美女毛片一区二区三区四区 | a片免费视频在线观看 | 我要看www免费看插插视频 | 免费播放一区二区三区 | 亚洲爆乳无码专区 | 丰满少妇弄高潮了www | 国产无套内射久久久国产 | 日本一区二区更新不卡 | 亚洲日韩一区二区 | 亚无码乱人伦一区二区 | 亚洲小说春色综合另类 | 亚洲国产精品美女久久久久 | 久久午夜无码鲁丝片秋霞 | 欧美性黑人极品hd | 日产国产精品亚洲系列 | 午夜福利试看120秒体验区 | 97夜夜澡人人爽人人喊中国片 | 性啪啪chinese东北女人 |