volatile和final
http://www.infoq.com/cn/articles/java-memory-model-4?utm_source=infoq&utm_medium=related_content_link&utm_campaign=relatedContent_articles_clk
volatile的特性
當我們聲明共享變量為volatile后,對這個變量的讀/寫將會很特別。理解volatile特性的一個好方法是:把對volatile變量的單個讀/寫,看成是使用同一個監視器鎖對這些單個讀/寫操作做了同步。下面我們通過具體的示例來說明,請看下面的示例代碼:
class VolatileFeaturesExample {volatile long vl = 0L; //使用volatile聲明64位的long型變量public void set(long l) {vl = l; //單個volatile變量的寫}public void getAndIncrement () {vl++; //復合(多個)volatile變量的讀/寫}public long get() {return vl; //單個volatile變量的讀} }假設有多個線程分別調用上面程序的三個方法,這個程序在語意上和下面程序等價:
class VolatileFeaturesExample {long vl = 0L; // 64位的long型普通變量public synchronized void set(long l) { //對單個的普通 變量的寫用同一個監視器同步vl = l;}public void getAndIncrement () { //普通方法調用long temp = get(); //調用已同步的讀方法temp += 1L; //普通寫操作set(temp); //調用已同步的寫方法}public synchronized long get() { //對單個的普通變量的讀用同一個監視器同步return vl;} }如上面示例程序所示,對一個volatile變量的單個讀/寫操作,與對一個普通變量的讀/寫操作使用同一個監視器鎖來同步,它們之間的執行效果相同。
監視器鎖的happens-before規則保證釋放監視器和獲取監視器的兩個線程之間的內存可見性,這意味著對一個volatile變量的讀,總是能看到(任意線程)對這個volatile變量最后的寫入。
監視器鎖的語義決定了臨界區代碼的執行具有原子性。這意味著即使是64位的long型和double型變量,只要它是volatile變量,對該變量的讀寫就將具有原子性。如果是多個volatile操作或類似于volatile++這種復合操作,這些操作整體上不具有原子性。
簡而言之,volatile變量自身具有下列特性:
- 可見性。對一個volatile變量的讀,總是能看到(任意線程)對這個volatile變量最后的寫入。
- 原子性:對任意單個volatile變量的讀/寫具有原子性,但類似于volatile++這種復合操作不具有原子性。
volatile寫-讀建立的happens before關系
上面講的是volatile變量自身的特性,對程序員來說,volatile對線程的內存可見性的影響比volatile自身的特性更為重要,也更需要我們去關注。
從JSR-133開始,volatile變量的寫-讀可以實現線程之間的通信。
從內存語義的角度來說,volatile與監視器鎖有相同的效果:volatile寫和監視器的釋放有相同的內存語義;volatile讀與監視器的獲取有相同的內存語義。
請看下面使用volatile變量的示例代碼:
class VolatileExample {int a = 0;volatile boolean flag = false;public void writer() {a = 1; //1flag = true; //2}public void reader() {if (flag) { //3int i = a; //4……}} }假設線程A執行writer()方法之后,線程B執行reader()方法。根據happens before規則,這個過程建立的happens before 關系可以分為兩類:
上述happens before 關系的圖形化表現形式如下:
在上圖中,每一個箭頭鏈接的兩個節點,代表了一個happens before 關系。黑色箭頭表示程序順序規則;橙色箭頭表示volatile規則;藍色箭頭表示組合這些規則后提供的happens before保證。
這里A線程寫一個volatile變量后,B線程讀同一個volatile變量。A線程在寫volatile變量之前所有可見的共享變量,在B線程讀同一個volatile變量后,將立即變得對B線程可見。
volatile寫-讀的內存語義
volatile寫的內存語義如下:
- 當寫一個volatile變量時,JMM會把該線程對應的本地內存中的共享變量刷新到主內存。
以上面示例程序VolatileExample為例,假設線程A首先執行writer()方法,隨后線程B執行reader()方法,初始時兩個線程的本地內存中的flag和a都是初始狀態。下圖是線程A執行volatile寫后,共享變量的狀態示意圖:
如上圖所示,線程A在寫flag變量后,本地內存A中被線程A更新過的兩個共享變量的值被刷新到主內存中。此時,本地內存A和主內存中的共享變量的值是一致的。
volatile讀的內存語義如下:
- 當讀一個volatile變量時,JMM會把該線程對應的本地內存置為無效。線程接下來將從主內存中讀取共享變量。
下面是線程B讀同一個volatile變量后,共享變量的狀態示意圖:
如上圖所示,在讀flag變量后,本地內存B已經被置為無效。此時,線程B必須從主內存中讀取共享變量。線程B的讀取操作將導致本地內存B與主內存中的共享變量的值也變成一致的了。
如果我們把volatile寫和volatile讀這兩個步驟綜合起來看的話,在讀線程B讀一個volatile變量后,寫線程A在寫這個volatile變量之前所有可見的共享變量的值都將立即變得對讀線程B可見。
下面對volatile寫和volatile讀的內存語義做個總結:
- 線程A寫一個volatile變量,實質上是線程A向接下來將要讀這個volatile變量的某個線程發出了(其對共享變量所在修改的)消息。
- 線程B讀一個volatile變量,實質上是線程B接收了之前某個線程發出的(在寫這個volatile變量之前對共享變量所做修改的)消息。
- 線程A寫一個volatile變量,隨后線程B讀這個volatile變量,這個過程實質上是線程A通過主內存向線程B發送消息。
volatile內存語義的實現
下面,讓我們來看看JMM如何實現volatile寫/讀的內存語義。
前文我們提到過重排序分為編譯器重排序和處理器重排序。為了實現volatile內存語義,JMM會分別限制這兩種類型的重排序類型。下面是JMM針對編譯器制定的volatile重排序規則表:
| 是否能重排序 | 第二個操作 | ||
| 第一個操作 | 普通讀/寫 | volatile讀 | volatile寫 |
| 普通讀/寫 | ? | ? | NO |
| volatile讀 | NO | NO | NO |
| volatile寫 | ? | NO | NO |
舉例來說,第三行最后一個單元格的意思是:在程序順序中,當第一個操作為普通變量的讀或寫時,如果第二個操作為volatile寫,則編譯器不能重排序這兩個操作。
從上表我們可以看出:
- 當第二個操作是volatile寫時,不管第一個操作是什么,都不能重排序。這個規則確保volatile寫之前的操作不會被編譯器重排序到volatile寫之后。
- 當第一個操作是volatile讀時,不管第二個操作是什么,都不能重排序。這個規則確保volatile讀之后的操作不會被編譯器重排序到volatile讀之前。
- 當第一個操作是volatile寫,第二個操作是volatile讀時,不能重排序。
為了實現volatile的內存語義,編譯器在生成字節碼時,會在指令序列中插入內存屏障來禁止特定類型的處理器重排序。對于編譯器來說,發現一個最優布置來最小化插入屏障的總數幾乎不可能,為此,JMM采取保守策略。下面是基于保守策略的JMM內存屏障插入策略:
- 在每個volatile寫操作的前面插入一個StoreStore屏障。
- 在每個volatile寫操作的后面插入一個StoreLoad屏障。
- 在每個volatile讀操作的后面插入一個LoadLoad屏障。
- 在每個volatile讀操作的后面插入一個LoadStore屏障。
上述內存屏障插入策略非常保守,但它可以保證在任意處理器平臺,任意的程序中都能得到正確的volatile內存語義。
下面是保守策略下,volatile寫插入內存屏障后生成的指令序列示意圖:
上圖中的StoreStore屏障可以保證在volatile寫之前,其前面的所有普通寫操作已經對任意處理器可見了。這是因為StoreStore屏障將保障上面所有的普通寫在volatile寫之前刷新到主內存。
這里比較有意思的是volatile寫后面的StoreLoad屏障。這個屏障的作用是避免volatile寫與后面可能有的volatile讀/寫操作重排序。因為編譯器常常無法準確判斷在一個volatile寫的后面,是否需要插入一個StoreLoad屏障(比如,一個volatile寫之后方法立即return)。為了保證能正確實現volatile的內存語義,JMM在這里采取了保守策略:在每個volatile寫的后面或在每個volatile讀的前面插入一個StoreLoad屏障。從整體執行效率的角度考慮,JMM選擇了在每個volatile寫的后面插入一個StoreLoad屏障。因為volatile寫-讀內存語義的常見使用模式是:一個寫線程寫volatile變量,多個讀線程讀同一個volatile變量。當讀線程的數量大大超過寫線程時,選擇在volatile寫之后插入StoreLoad屏障將帶來可觀的執行效率的提升。從這里我們可以看到JMM在實現上的一個特點:首先確保正確性,然后再去追求執行效率。
下面是在保守策略下,volatile讀插入內存屏障后生成的指令序列示意圖:
上圖中的LoadLoad屏障用來禁止處理器把上面的volatile讀與下面的普通讀重排序。LoadStore屏障用來禁止處理器把上面的volatile讀與下面的普通寫重排序。
上述volatile寫和volatile讀的內存屏障插入策略非常保守。在實際執行時,只要不改變volatile寫-讀的內存語義,編譯器可以根據具體情況省略不必要的屏障。下面我們通過具體的示例代碼來說明:
class VolatileBarrierExample {int a;volatile int v1 = 1;volatile int v2 = 2;void readAndWrite() {int i = v1; //第一個volatile讀int j = v2; // 第二個volatile讀a = i + j; //普通寫v1 = i + 1; // 第一個volatile寫v2 = j * 2; //第二個 volatile寫}… //其他方法 }針對readAndWrite()方法,編譯器在生成字節碼時可以做如下的優化:
注意,最后的StoreLoad屏障不能省略。因為第二個volatile寫之后,方法立即return。此時編譯器可能無法準確斷定后面是否會有volatile讀或寫,為了安全起見,編譯器常常會在這里插入一個StoreLoad屏障。
上面的優化是針對任意處理器平臺,由于不同的處理器有不同“松緊度”的處理器內存模型,內存屏障的插入還可以根據具體的處理器內存模型繼續優化。以x86處理器為例,上圖中除最后的StoreLoad屏障外,其它的屏障都會被省略。
前面保守策略下的volatile讀和寫,在 x86處理器平臺可以優化成:
前文提到過,x86處理器僅會對寫-讀操作做重排序。X86不會對讀-讀,讀-寫和寫-寫操作做重排序,因此在x86處理器中會省略掉這三種操作類型對應的內存屏障。在x86中,JMM僅需在volatile寫后面插入一個StoreLoad屏障即可正確實現volatile寫-讀的內存語義。這意味著在x86處理器中,volatile寫的開銷比volatile讀的開銷會大很多(因為執行StoreLoad屏障開銷會比較大)。
JSR-133為什么要增強volatile的內存語義
在JSR-133之前的舊Java內存模型中,雖然不允許volatile變量之間重排序,但舊的Java內存模型允許volatile變量與普通變量之間重排序。在舊的內存模型中,VolatileExample示例程序可能被重排序成下列時序來執行:
在舊的內存模型中,當1和2之間沒有數據依賴關系時,1和2之間就可能被重排序(3和4類似)。其結果就是:讀線程B執行4時,不一定能看到寫線程A在執行1時對共享變量的修改。
因此在舊的內存模型中 ,volatile的寫-讀沒有監視器的釋放-獲所具有的內存語義。為了提供一種比監視器鎖更輕量級的線程之間通信的機制,JSR-133專家組決定增強volatile的內存語義:嚴格限制編譯器和處理器對volatile變量與普通變量的重排序,確保volatile的寫-讀和監視器的釋放-獲取一樣,具有相同的內存語義。從編譯器重排序規則和處理器內存屏障插入策略來看,只要volatile變量與普通變量之間的重排序可能會破壞volatile的內存語意,這種重排序就會被編譯器重排序規則和處理器內存屏障插入策略禁止。
由于volatile僅僅保證對單個volatile變量的讀/寫具有原子性,而監視器鎖的互斥執行的特性可以確保對整個臨界區代碼的執行具有原子性。在功能上,監視器鎖比volatile更強大;在可伸縮性和執行性能上,volatile更有優勢。如果讀者想在程序中用volatile代替監視器鎖,請一定謹慎。
一句話總結就是:
volatile通過兩點保證,1. 在寫或者讀volatile變量之前,在其上下都插入了屏障
2. 寫線程更新完volatile之后,會發送消息告訴讀線程讀取新的數據
http://www.infoq.com/cn/articles/java-memory-model-6
與前面介紹的鎖和volatile相比較,對final域的讀和寫更像是普通的變量訪問。對于final域,編譯器和處理器要遵守兩個重排序規則:
下面,我們通過一些示例性的代碼來分別說明這兩個規則:
代碼1
public class FinalExample {int i; //普通變量final int j; //final變量static FinalExample obj;public void FinalExample () { //構造函數i = 1; //寫普通域j = 2; //寫final域}public static void writer () { //寫線程A執行obj = new FinalExample ();}public static void reader () { //讀線程B執行FinalExample object = obj; //讀對象引用int a = object.i; //讀普通域int b = object.j; //讀final域} }這里假設一個線程A執行writer ()方法,隨后另一個線程B執行reader ()方法。下面我們通過這兩個線程的交互來說明這兩個規則。
寫final域的重排序規則
寫final域的重排序規則禁止把final域的寫重排序到構造函數之外。這個規則的實現包含下面2個方面:
- JMM禁止編譯器把final域的寫重排序到構造函數之外。
- 編譯器會在final域的寫之后,構造函數return之前,插入一個StoreStore屏障。這個屏障禁止處理器把final域的寫重排序到構造函數之外。
現在讓我們分析writer ()方法。writer ()方法只包含一行代碼:finalExample = new FinalExample ()。這行代碼包含兩個步驟:
假設線程B讀對象引用與讀對象的成員域之間沒有重排序(馬上會說明為什么需要這個假設),下圖是一種可能的執行時序:
在上圖中,寫普通域的操作被編譯器重排序到了構造函數之外,讀線程B錯誤的讀取了普通變量i初始化之前的值。而寫final域的操作,被寫final域的重排序規則“限定”在了構造函數之內,讀線程B正確的讀取了final變量初始化之后的值。
寫final域的重排序規則可以確保:在對象引用為任意線程可見之前,對象的final域已經被正確初始化過了,而普通域不具有這個保障。以上圖為例,在讀線程B“看到”對象引用obj時,很可能obj對象還沒有構造完成(對普通域i的寫操作被重排序到構造函數外,此時初始值2還沒有寫入普通域i)。
讀final域的重排序規則
讀final域的重排序規則如下:
- 在一個線程中,初次讀對象引用與初次讀該對象包含的final域,JMM禁止處理器重排序這兩個操作(注意,這個規則僅僅針對處理器)。編譯器會在讀final域操作的前面插入一個LoadLoad屏障。
初次讀對象引用與初次讀該對象包含的final域,這兩個操作之間存在間接依賴關系。由于編譯器遵守間接依賴關系,因此編譯器不會重排序這兩個操作。大多數處理器也會遵守間接依賴,大多數處理器也不會重排序這兩個操作。但有少數處理器允許對存在間接依賴關系的操作做重排序(比如alpha處理器),這個規則就是專門用來針對這種處理器。
reader()方法包含三個操作:
現在我們假設寫線程A沒有發生任何重排序,同時程序在不遵守間接依賴的處理器上執行,下面是一種可能的執行時序:
在上圖中,讀對象的普通域的操作被處理器重排序到讀對象引用之前。讀普通域時,該域還沒有被寫線程A寫入,這是一個錯誤的讀取操作。而讀final域的重排序規則會把讀對象final域的操作“限定”在讀對象引用之后,此時該final域已經被A線程初始化過了,這是一個正確的讀取操作。
讀final域的重排序規則可以確保:在讀一個對象的final域之前,一定會先讀包含這個final域的對象的引用。在這個示例程序中,如果該引用不為null,那么引用對象的final域一定已經被A線程初始化過了。
如果final域是引用類型
上面我們看到的final域是基礎數據類型,下面讓我們看看如果final域是引用類型,將會有什么效果?
請看下列示例代碼:
代碼2
public class FinalReferenceExample { final int[] intArray; //final是引用類型 static FinalReferenceExample obj;public FinalReferenceExample () { //構造函數intArray = new int[1]; //1intArray[0] = 1; //2 }public static void writerOne () { //寫線程A執行obj = new FinalReferenceExample (); //3 }public static void writerTwo () { //寫線程B執行obj.intArray[0] = 2; //4 }public static void reader () { //讀線程C執行if (obj != null) { //5int temp1 = obj.intArray[0]; //6} } }這里final域為一個引用類型,它引用一個int型的數組對象。對于引用類型,寫final域的重排序規則對編譯器和處理器增加了如下約束:
對上面的示例程序,我們假設首先線程A執行writerOne()方法,執行完后線程B執行writerTwo()方法,執行完后線程C執行reader ()方法。下面是一種可能的線程執行時序:
在上圖中,1是對final域的寫入,2是對這個final域引用的對象的成員域的寫入,3是把被構造的對象的引用賦值給某個引用變量。這里除了前面提到的1不能和3重排序外,2和3也不能重排序。
JMM可以確保讀線程C至少能看到寫線程A在構造函數中對final引用對象的成員域的寫入。即C至少能看到數組下標0的值為1。而寫線程B對數組元素的寫入,讀線程C可能看的到,也可能看不到。JMM不保證線程B的寫入對讀線程C可見,因為寫線程B和讀線程C之間存在數據競爭,此時的執行結果不可預知。
如果想要確保讀線程C看到寫線程B對數組元素的寫入,寫線程B和讀線程C之間需要使用同步原語(lock或volatile)來確保內存可見性。
為什么final引用不能從構造函數內“逸出”
前面我們提到過,寫final域的重排序規則可以確保:在引用變量為任意線程可見之前,該引用變量指向的對象的final域已經在構造函數中被正確初始化過了。其實要得到這個效果,還需要一個保證:在構造函數內部,不能讓這個被構造對象的引用為其他線程可見,也就是對象引用不能在構造函數中“逸出”。為了說明問題,讓我們來看下面示例代碼:
代碼3
public class FinalReferenceEscapeExample { final int i; static FinalReferenceEscapeExample obj;public FinalReferenceEscapeExample () {i = 1; //1寫final域obj = this; //2 this引用在此“逸出” }public static void writer() {new FinalReferenceEscapeExample (); }public static void reader {if (obj != null) { //3int temp = obj.i; //4} } }假設一個線程A執行writer()方法,另一個線程B執行reader()方法。這里的操作2使得對象還未完成構造前就為線程B可見。即使這里的操作2是構造函數的最后一步,且即使在程序中操作2排在操作1后面,執行read()方法的線程仍然可能無法看到final域被初始化后的值,因為這里的操作1和操作2之間可能被重排序。實際的執行時序可能如下圖所示:
從上圖我們可以看出:在構造函數返回前,被構造對象的引用不能為其他線程可見,因為此時的final域可能還沒有被初始化。在構造函數返回后,任意線程都將保證能看到final域正確初始化之后的值。
final語義在處理器中的實現
現在我們以x86處理器為例,說明final語義在處理器中的具體實現。
上面我們提到,寫final域的重排序規則會要求譯編器在final域的寫之后,構造函數return之前,插入一個StoreStore障屏。讀final域的重排序規則要求編譯器在讀final域的操作前面插入一個LoadLoad屏障。
由于x86處理器不會對寫-寫操作做重排序,所以在x86處理器中,寫final域需要的StoreStore障屏會被省略掉。同樣,由于x86處理器不會對存在間接依賴關系的操作做重排序,所以在x86處理器中,讀final域需要的LoadLoad屏障也會被省略掉。也就是說在x86處理器中,final域的讀/寫不會插入任何內存屏障!
JSR-133為什么要增強final的語義
在舊的Java內存模型中 ,最嚴重的一個缺陷就是線程可能看到final域的值會改變。比如,一個線程當前看到一個整形final域的值為0(還未初始化之前的默認值),過一段時間之后這個線程再去讀這個final域的值時,卻發現值變為了1(被某個線程初始化之后的值)。最常見的例子就是在舊的Java內存模型中,String的值可能會改變(參考文獻2中有一個具體的例子,感興趣的讀者可以自行參考,這里就不贅述了)。
為了修補這個漏洞,JSR-133專家組增強了final的語義。通過為final域增加寫和讀重排序規則,可以為java程序員提供初始化安全保證:只要對象是正確構造的(被構造對象的引用在構造函數中沒有“逸出”),那么不需要使用同步(指lock和volatile的使用),就可以保證任意線程都能看到這個final域在構造函數中被初始化之后的值。
final總結,如果成員變量是final的,那么在類的構造函數中,在final變量之后有一個屏障,保證,構造函數返回一定是在final變量之后發生。
解疑:
代碼1和代碼3很相似,為什么代碼3有問題?
對于writer線程而言,調用構造函數,由于i是final,所以,i肯定是在構造函數返回之前執行的。但是如果obj和i的執行順序條換了,構造函數剛執行完obj=this,這是reader線程發現obj!=null,就開始讀取i了,但是此時,i還沒有賦值,并且構造函數還沒有執行完。
注意,final和volatile不能同時修飾一個成員變量
對于volatile而言,如果修飾一個對象而不是一個基本類型時,其意義更值得深究。
如果cache不聲明為volatile時,有的線程在執行cache=new OneValueCache時,可能得到的是一個不完全的對象。
new操作大概可以分為三個步驟:
1. 分配一些內存資源
2. 執行構造函數內部程序,初始化成員變量
3. 返回一個新對象
如果不是volatile的,那么可能2沒有執行完,就直接執行3了。但是volatile保證了happens-before的關系,即在執行3之前,1,2,肯定都會執行完。
為什么OneValueCache的成員變量都是final的?
volatile不能同步cache內部的狀態的改變,就是說,如果一個線程獲得了cache的引用之后,如果另一個線程修改其內部的狀態,這樣就會不同步。將內部的域全部聲明為final之后,如果另一個線程想修改cache的狀態,必須創建新的對象。
總結
以上是生活随笔為你收集整理的volatile和final的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ConcurrentHashMap之实现
- 下一篇: svn代码回滚命令