一、pytorch搭建实战以及sequential的使用
一、pytorch搭建實戰以及sequential的使用
- 1.A sequential container
- 2.搭建cifar10 model structure
- 3.創建實例進行測試(可以檢查網絡是否正確)
- 3.tensorboard圖可視化
1.A sequential container
官網說明文檔 : https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#sequential
Example
model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU())# Using Sequential with OrderedDict. This is functionally the # same as the above code model = nn.Sequential(OrderedDict([('conv1', nn.Conv2d(1,20,5)),('relu1', nn.ReLU()),('conv2', nn.Conv2d(20,64,5)),('relu2', nn.ReLU())]))2.搭建cifar10 model structure
 共有9層網絡結構,順序如下:
 (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
 (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
 (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
 (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
 (6): Flatten(start_dim=1, end_dim=-1)
 (7): Linear(in_features=1024, out_features=64, bias=True)
 (8): Linear(in_features=64, out_features=10, bias=True)
搭建網絡結構:
class Qu(nn.Module):def __init__(self):super(Qu, self).__init__()self.model1 = Sequential(Conv2d(3, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 32, 5, padding=2),MaxPool2d(2),Conv2d(32, 64, 5, padding=2),MaxPool2d(2),Flatten(),Linear(1024, 64),Linear(64, 10))def forward(self, x):x = self.model1(x)return x其中
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode=‘zeros’, device=None, dtype=None)
例如第一個卷積層conv2d的 輸入通道=3,輸出通道=32,卷積核個數=5x5, padding=2
 由于卷積作用后HW不變,仍為32X32,故需計算padding,padding的計算方法如下:
 
3.創建實例進行測試(可以檢查網絡是否正確)
qu = Qu() #print(qu) input = torch.ones(64, 3, 32, 32) output = qu(input) print(output.shape) 輸出結果 torch.Size([64, 10])3.tensorboard圖可視化
writer = SummaryWriter("./logs_seq") writer.add_graph(qu, input) writer.close()總結
以上是生活随笔為你收集整理的一、pytorch搭建实战以及sequential的使用的全部內容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: 华硕笔记本卸载并重新安装Ubuntu16
- 下一篇: idea包显示问题-层次显示设置-ide
