keras冻结_[开发技巧]·keras如何冻结网络层
[開發技巧]·keras如何凍結網絡層
在使用keras進行進行finetune有時需要凍結一些網絡層加速訓練
keras中提供凍結單個層的方法:layer.trainable = False
這個應該如何使用?下面給大家一些例子
1.凍結model所有網絡層
base_model = DenseNet121(include_top=False, weights="imagenet",input_shape=(224, 224, 3))
for layer in base_model.layers:
layer.trainable = False
2.凍結model某些網絡層
在keras中除了從model.layers取得layer,我們還可以通過model.get_layer(layer_name)獲取。
base_model = VGG19(weights='imagenet')
base_model.get_layer('block4_pool').trainable = False
你可能會疑問,我不知道layer_name該怎么辦呢?答案是通過model.summary()輸出一下,
如下所示,最左面一列就是layer_name(注意是括號外面的>
__________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
==================================================================================================
input_1 (InputLayer) (None, 224, 224, 3) 0
__________________________________________________________________________________________________
NASNet (Model) (None, 7, 7, 1056) 4269716 input_1[0][0]
__________________________________________________________________________________________________
resnet50 (Model) (None, 7, 7, 2048) 23587712 input_1[0][0]
__________________________________________________________________________________________________
densenet121 (Model) (None, 7, 7, 1024) 7037504 input_1[0][0]
__________________________________________________________________________________________________
global_average_pooling2d_1 (Glo (None, 1056) 0 NASNet[1][0]
__________________________________________________________________________________________________
global_average_pooling2d_2 (Glo (None, 2048) 0 resnet50[1][0]
__________________________________________________________________________________________________
global_average_pooling2d_3 (Glo (None, 1024) 0 densenet121[1][0]
__________________________________________________________________________________________________
concatenate_5 (Concatenate) (None, 4128) 0 global_average_pooling2d_1[0][0]
global_average_pooling2d_2[0][0]
global_average_pooling2d_3[0][0]
__________________________________________________________________________________________________
dropout_1 (Dropout) (None, 4128) 0 concatenate_5[0][0]
__________________________________________________________________________________________________
classifier (Dense) (None, 200) 825800 dropout_1[0][0]
==================================================================================================
Total params: 35,720,732
Trainable params: 825,800
Non-trainable params: 34,894,932
__________________________________________________________________________________________________
None
hope this helps
本文同步分享在 博客“小宋是呢”(CSDN)。
如有侵權,請聯系 support@oschina.cn 刪除。
本文參與“OSC源創計劃”,歡迎正在閱讀的你也加入,一起分享。
總結
以上是生活随笔為你收集整理的keras冻结_[开发技巧]·keras如何冻结网络层的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 三菱gx软件初始化失败怎么解决_三菱PL
- 下一篇: mysql-connector-java