python 点云配准_点云配准(Registration)算法——以PCL为例
本文為PCL官方教程的Registration模塊的中文簡介版。
An Overview of Pairwise Registration
點云配準包括以下步驟:
from a set of points, identify?interest points?(i.e.,?keypoints) that best represent the scene in both datasets;
at each keypoint, compute a?feature descriptor;
from the set of?feature descriptors?together with their XYZ positions in the two datasets, estimate a set of?correspondences, based on the similarities between features and positions;
given that the data is assumed to be noisy, not all correspondences are valid, so reject those bad correspondences that contribute negatively to the registration process;
from the remaining set of good correspondences, estimate a motion transformation.
針對上述每一個步驟,PCL的registration模塊提供了多種算法進行實現 。
Keypoint
諸如?NARF, SIFT and FAST。
Feature descriptors
諸如NARF, FPFH, BRIEF or SIFT。
Correspondences Estimation
point matching
brute force matching,
kd-tree nearest neighbor search (FLANN),
searching in the image space of organized data, and
searching in the index space of organized data.
feature matching
brute force matching and
kd-tree nearest neighbor search (FLANN).
Corresdondences Rejection
使用RANSAC,或者剪出多余數據。
Transformation Estimation
諸如?SVD for motion estimate; - Levenberg-Marquardt with different kernels for motion estimate。
算法案例
其中(1)和(2)是point matching,(3)是feature matching。
(1)
ICP的使用SVD求解轉換矩陣,其參考文章:
Least-Squares Estimation of Transformation Parameters Between Two Point Patterns
(2)
參考論文:
1. The Three-Dimensional Normal-Distributions Transform?an Efficient Representation for Registration,?Surface Analysis, and Loop Detection. MARTIN MAGNUSSON doctoral dissertation。
2. Line Search Algorithm with Guaranteed Sufficient Decrease. 計算迭代步長。
參考論文:
Pose Estimation using Local Structure-Specific Shape and Appearance Context. ICRA 2013.
相關資料:
總結
以上是生活随笔為你收集整理的python 点云配准_点云配准(Registration)算法——以PCL为例的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 低功耗蓝牙onscanresult 出来
- 下一篇: python 素描化图像_python实