GCN(二)GCN模型介绍
上一節介紹了處理cora數據集,以及返回的結果:
- features:論文的屬性特征,維度2708×14332708 \times 14332708×1433,并且做了歸一化,即每一篇論文屬性值的和為1.
- labels:每一篇論文對應的分類編號:0-6
- adj:鄰接矩陣,維度2708×27082708 \times 27082708×2708
- idx_train:0-139
- idx_val:200-499
- idx_test:500-1499
這一節介紹GCN的模型。
GCN 模型
model:
import torch.nn as nn import torch.nn.functional as F from pygcn.layers import GraphConvolutionclass GCN(nn.Module):def __init__(self, nfeat, nhid, nclass, dropout):super(GCN, self).__init__()self.gc1 = GraphConvolution(nfeat, nhid) # 構建第一層 GCNself.gc2 = GraphConvolution(nhid, nclass) # 構建第二層 GCNself.dropout = dropoutdef forward(self, x, adj):x = F.relu(self.gc1(x, adj))x = F.dropout(x, self.dropout, training=self.training)x = self.gc2(x, adj)return F.log_softmax(x, dim=1)layers:
import mathimport torchfrom torch.nn.parameter import Parameter from torch.nn.modules.module import Moduleclass GraphConvolution(Module):"""Simple GCN layer, similar to https://arxiv.org/abs/1609.02907"""def __init__(self, in_features, out_features, bias=True):super(GraphConvolution, self).__init__()self.in_features = in_featuresself.out_features = out_featuresself.weight = Parameter(torch.FloatTensor(in_features, out_features)) # input_features, out_featuresif bias:self.bias = Parameter(torch.FloatTensor(out_features))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self):stdv = 1. / math.sqrt(self.weight.size(1))self.weight.data.uniform_(-stdv, stdv) # 隨機化參數if self.bias is not None:self.bias.data.uniform_(-stdv, stdv)def forward(self, input, adj):support = torch.mm(input, self.weight) # GraphConvolution forward。input*weightoutput = torch.spmm(adj, support) # 稀疏矩陣的相乘,和mm一樣的效果if self.bias is not None:return output + self.biaselse:return outputdef __repr__(self):return self.__class__.__name__ + ' (' \+ str(self.in_features) + ' -> ' \+ str(self.out_features) + ')'初始化模型
調用模型:
model = GCN(nfeat=features.shape[1],nhid=args.hidden,nclass=labels.max().item() + 1,dropout=args.dropout)具體參數:
model = GCN(nfeat=1433,nhid=16,nclass=7,dropout=0.5)初始化模型兩層GCN:
self.gc1 = GraphConvolution(nfeat=1433, nhid=16) # 構建第一層 GCN self.gc2 = GraphConvolution(nhid=16, nclass=7) # 構建第二層 GCN self.dropout = 0.5初始化具體layer:
第一層:gc1
參數www的維度:W1433×16W_{1433 \times 16}W1433×16?
參數bbb的維度:b1×16b_{1 \times 16}b1×16?
第二層:gc2
參數www的維度:W1433×16W_{1433 \times 16}W1433×16?
參數bbb的維度: b1×7b_{1 \times 7}b1×7?
forward執行模型
執行self.gc1(x, adj),x表示輸入特征,維度2708×14332708 \times 14332708×1433,adj表示鄰接矩陣,維度2708×27082708 \times 27082708×2708
執行GCN layer gc1層,
計算output,output2708×16=adj2708×2708×input2708×1433×W1433×16output_{2708 \times 16} = adj_{2708 \times 2708} \times input_{2708 \times 1433} \times W_{1433 \times 16}output2708×16?=adj2708×2708?×input2708×1433?×W1433×16?,然后返回output=output2708×16+bias1×16output = output_{2708 \times 16} + bias_{1 \times 16}output=output2708×16?+bias1×16?
output[0]= tensor([ 0.0201, -0.0242, 0.0608, 0.0272, 0.0133, 0.0085, 0.0084, -0.0265,0.0149, -0.0100, 0.0077, 0.0029, 0.0145, -0.0181, -0.0021, -0.0183],grad_fn=<SelectBackward>) self.bias= Parameter containing: tensor([-0.2232, -0.0295, -0.1387, 0.2170, -0.1749, -0.1551, 0.1056, -0.1860,-0.0666, -0.1327, 0.0212, 0.1587, 0.2496, -0.0154, -0.1683, 0.0151],requires_grad=True) (output + self.bias)[0]= tensor([-0.2030, -0.0537, -0.0779, 0.2442, -0.1616, -0.1466, 0.1140, -0.2125,-0.0516, -0.1427, 0.0289, 0.1615, 0.2641, -0.0336, -0.1704, -0.0032],grad_fn=<SelectBackward>)計算output,output2708×7=adj2708×2708×input2708×16×W16×7output_{2708 \times 7} = adj_{2708 \times 2708} \times input_{2708 \times 16} \times W_{16 \times 7}output2708×7?=adj2708×2708?×input2708×16?×W16×7?,然后返回output=output2708×7+bias1×7output = output_{2708 \times 7} + bias_{1 \times 7}output=output2708×7?+bias1×7?
output[0]= tensor([-0.1928, 0.1723, 0.1689, -0.0516, 0.0387, -0.0276, -0.1027],grad_fn=<SelectBackward>)loss=tensor(1.9186, grad_fn=<NllLossBackward>) acc_train=tensor(0.1357, dtype=torch.float64)
總結
以上是生活随笔為你收集整理的GCN(二)GCN模型介绍的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 不孕不育治疗专科医院
- 下一篇: GAT模型介绍