从菜鸟成为数据科学家的养成方案
首先,各個公司對數據科學家的定義各不相同,當前還沒有統一的定義。但在一般情況下,一個數據科學家結合了軟件工程師與統計學家的技能,并且在他或者她希望工作的領域投入了大量行業知識。
大約90%的數據科學家至少有大學教育經歷,甚至到博士以及獲得博士學位,當然,他們獲得的學位的領域非常廣泛。一些招聘者甚至發現人文專業的人們有所需的創造力,他們能教別人一些關鍵技能。
因此,排除一個數據科學的學位計劃(世界各地的著名大學雨后春筍般的出現著),你需要采取什么措施,成為一個數據科學家?
復習你的數學和統計技能。一個好的數據科學家必須能夠理解數據告訴你的內容,做到這一點,你必須有扎實的基本線性代數,對算法和統計技能的理解。在某些特定場合可能需要高等數學,但這是一個好的開始場合。
了解機器學習的概念。機器學習是下一個新興詞,卻和大數據有著千絲萬縷的聯系。機器學習使用人工智能算法將數據轉化為價值,并且無需顯式編程。
學習代碼。數據科學家必須知道如何調整代碼,以便告訴計算機如何分析數據。從一個開放源碼的語言如python那里開始吧。
了解數據庫、數據池及分布式存儲。數據存儲在數據庫、數據池或整個分布式網絡中。以及如何建設這些數據的存儲庫取決于你如何訪問、使用、并分析這些數據。如果當你建設你的數據存儲時沒有整體架構或者超前規劃,那后續對你的影響將十分深遠。
學習數據修改和數據清洗技術。數據修改是將原始數據到另一種更容易訪問和分析的格式。數據清理有助于消除重復和“壞”數據。兩者都是數據科學家工具箱中的必備工具。
了解良好的數據可視化和報告的基本知識。你不必成為一個平面設計師,但你確實需要深諳如何創建數據報告,便于外行的人比如你的經理或CEO可以理解。
添加更多的工具到您的工具箱。一旦你掌握了以上技巧,是時候擴大你的數據科學工具箱了,包括Hadoop、R語言和Spark。這些工具的使用經驗和知識將讓你處于大量數據科學求職者之上。
練習。在你在新的領域有一個工作之前,你如何練習成為數據科學家?使用開源代碼開發一個你喜歡的項目、參加比賽、成為網絡工作數據科學家、參加訓練營、志愿者或實習生。最好的數據科學家在數據領域將擁有經驗和直覺,能夠展示自己的作品,以成為應聘者。
成為社區的一員。跟著同行業中的思想領袖,閱讀行業博客和網站,參與,提出問題,并隨時了解時事新聞和理論。
<ignore_js_op>?
以大數據分析師為目標,從數據分析基礎、JAVA語言入門和linux操作系統入門知識學起,系統介紹Hadoop、HDFS、MapReduce和Hbase等理論知識和hadoop的生態環境,詳細演示hadoop三種模式的安裝配置,以案例的形式,重點講解基于mahout項目的大數據分析之聚類、分類以及主題推薦。區別于普通的JAVA程序員,本課程的重點是培養基于Hadoop架構的大數據分析思想及架構設計,通過演示實際的大數據分析案例。
轉載于:https://www.cnblogs.com/jasonzeng888/p/6237306.html
總結
以上是生活随笔為你收集整理的从菜鸟成为数据科学家的养成方案的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: std::priority_queue
- 下一篇: BZOJ 3489: A simple