嘟嘟嘟
突然覺得splay挺有意思的……
這道題只有一個任務:區間翻轉。
首先應該知道的是,splay和線段樹一樣,都可以打標記,然后走到每一個節點之前先下傳。
那怎么打標記呢?還應該有“區間”的思想。
對于區間\([L, R]\),想辦法把這個區間所在的子樹提取出來,然后打個標記即可。
那怎么提取呢?其實也不難。只要找出\(L\)的前驅\(a = L - 1\)和\(R\)的后繼\(b = R + 1\),然后把\(a\)旋到根,再把\(b\)旋到根的右子節點,這樣\(b\)的左子樹就是當前區間了。
但是找前驅和后繼只能像bst那么找,因為這棵splay的key值是下標,而下標并沒有存起來,而是通過子樹大小體現的。所以上述找前驅和后繼操作相當于查詢第\(k\)大。因為事先加了\(-INF\)和\(INF\)防止越界,所以找前驅就是查詢第\(L\)大的,后繼就是第\(R + 2\)大的。
int getRank(int k)
{int now = root;while(1){pushdown(now);if(t[t[now].ch[0]].siz >= k) now = t[now].ch[0];else if(t[t[now].ch[0]].siz + 1 == k) return now;else k -= t[t[now].ch[0]].siz + 1, now = t[now].ch[1];}
}
void update(int L, int R)
{int a = getRank(L), b = getRank(R + 2); //pre(L), nxt(R)splay(a, 0); splay(b, a); //現在b的左子樹就是當前區間pushdown(root); pushdown(t[root].ch[1]);int now = t[t[root].ch[1]].ch[0];t[now].lzy ^= 1;
}
還有一件事就是建樹,雖然可以像這道題一樣每一次插入一個數,不過有更可愛的方法。
仿照線段樹的建樹方法,但有一個顯著的區別是線段樹的每一個節點表示一個區間,而splay就表示一個點,所以遞歸的時候把當前區間的\(a[mid]\)作為線段樹該節點的權值,然后到\([L, mid - 1]\)和\([mid + 1, R]\)中建立左右子樹。
int build(int L, int R, int f)
{if(L > R) return 0;int mid = (L + R) >> 1, now = ++ncnt;t[now].val = a[mid]; t[now].fa = f;t[now].ch[0] = build(L, mid - 1, now);t[now].ch[1] = build(mid + 1, R, now);pushup(now);return now;
}
最后一件事就是輸出。利用splay自身的性質,中序遍歷就是答案。
完整代碼
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 1e5 + 5;
inline ll read()
{ll ans = 0;char ch = getchar(), last = ' ';while(!isdigit(ch)) last = ch, ch = getchar();while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();if(last == '-') ans = -ans;return ans;
}
inline void write(ll x)
{if(x < 0) x = -x, putchar('-');if(x >= 10) write(x / 10);putchar(x % 10 + '0');
}int n, m, a[maxn];
struct Tree
{int ch[2], fa;int val, siz, lzy;
}t[maxn];
int root, ncnt = 0;
void _PrintTr(int now)
{if(!now) return;printf("nd:%d val:%d ls:%d rs:%d\n", now, t[now].val, t[t[now].ch[0]].val, t[t[now].ch[1]].val);_PrintTr(t[now].ch[0]); _PrintTr(t[now].ch[1]);
}
void pushdown(int now)
{if(now && t[now].lzy){t[t[now].ch[0]].lzy ^= 1; t[t[now].ch[1]].lzy ^= 1;swap(t[now].ch[0], t[now].ch[1]);t[now].lzy = 0;}
}
void pushup(int now)
{t[now].siz = t[t[now].ch[0]].siz + t[t[now].ch[1]].siz + 1;
}
void rotate(int x)
{int y = t[x].fa, z = t[y].fa, k = (t[y].ch[1] == x);t[z].ch[t[z].ch[1] == y] = x; t[x].fa = z;t[y].ch[k] = t[x].ch[k ^ 1]; t[t[y].ch[k]].fa = y;t[x].ch[k ^ 1] = y; t[y].fa = x;pushup(y); pushup(x);
}
void splay(int x, int s) //旋轉的時候不用pushdown.(因為是自底向上的)
{while(t[x].fa != s){int y = t[x].fa, z = t[y].fa;if(z != s){if((t[z].ch[0] == y) ^ (t[y].ch[0] == x)) rotate(x);else rotate(y);}rotate(x);}if(s == 0) root = x;
}
int build(int L, int R, int f)
{if(L > R) return 0;int mid = (L + R) >> 1, now = ++ncnt;t[now].val = a[mid]; t[now].fa = f;t[now].ch[0] = build(L, mid - 1, now);t[now].ch[1] = build(mid + 1, R, now);pushup(now);return now;
}
int getRank(int k)
{int now = root;while(1){pushdown(now);if(t[t[now].ch[0]].siz >= k) now = t[now].ch[0];else if(t[t[now].ch[0]].siz + 1 == k) return now;else k -= t[t[now].ch[0]].siz + 1, now = t[now].ch[1];}
}
void update(int L, int R)
{int a = getRank(L), b = getRank(R + 2); //pre(L), nxt(R)splay(a, 0); splay(b, a); //現在b的左子樹就是當前區間pushdown(root); pushdown(t[root].ch[1]);int now = t[t[root].ch[1]].ch[0];t[now].lzy ^= 1;
}
void print(int now)
{pushdown(now);if(t[now].ch[0]) print(t[now].ch[0]);if(t[now].val != INF && t[now].val != -INF) write(t[now].val), space;if(t[now].ch[1]) print(t[now].ch[1]);
}int main()
{n = read(); m = read();a[1] = -INF; a[n + 2] = INF;for(int i = 1; i <= n; ++i) a[i + 1] = i;root = build(1, n + 2, 0);//_PrintTr(root);for(int i = 1, L, R; i <= m; ++i) L = read(), R = read(), update(L, R);print(root), enter;return 0;
}
轉載于:https://www.cnblogs.com/mrclr/p/10060582.html
總結
以上是生活随笔為你收集整理的luogu P3391 【模板】文艺平衡树(Splay)的全部內容,希望文章能夠幫你解決所遇到的問題。
如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。