hunnu---11547 你的组合数学学得如何?
生活随笔
收集整理的這篇文章主要介紹了
hunnu---11547 你的组合数学学得如何?
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
| ? ? 解析:比較簡單的DP,從左向右一個一個連續著放,dp[X][Y]表示到第X個硬幣的時候Y狀態的方案數,Y=0表示x左邊那個不是正面的,Y=1表示x左邊那個是正面 ? 如果左邊不是正面,那么當前放正面的就把方案數加到Y=1里面,放反面的就加到Y=0 ? 如果是正面,那么當前放正面就不成立了,所以不用加,放反面就加到Y=0里面去 ? 遞推公式: ? dp[i][0]= ( dp[i-1][0] + dp[i-1][1] )%mod; ? dp[i][1]= dp[i-1][0] %mod; ? 你的組合數學學得如何?? |
| Time Limit:?1000ms,?Special Time Limit:2500ms,?Memory Limit:65536KB |
| Total submit users:?152,?Accepted users:?120 |
| Problem 11547 :?No special judgement |
| Problem description |
| ??小明和小紅總是喜歡在一起玩。一天,他們又在一起愉快的玩耍了一個下午,到了吃晚飯的時間,他們決定用拋硬幣的方法來決定誰請吃晚餐。? 規則很簡單,他們拋一枚均勻的硬幣N次,如果出現連續兩次或更多正面朝上的情況,那么就是小紅請,否則就是小明請。? 現在小明想知道,拋N次的所有情況下,會有多少次不出現連續兩次正面或更多正面朝上的情況 |
| Input |
| ??有多組測試數據,請處理到文件結束。 每組測試數據僅包含一個數N(1 <= N <= 1000),表示拋擲的次數。 |
| Output |
| ??每組數據輸出一行,格式為Case #k: Ans, k從1開始, Ans表示答案. 由于答案可能會很大,輸出Ans % (10^9 + 7)即可. |
| Sample Input |
| 1 2 |
| Sample Output |
| Case #1: 2 Case #2: 3 |
| Problem Source |
| ??HUNNU?Contest? |
?
轉載于:https://www.cnblogs.com/cancangood/p/4563944.html
總結
以上是生活随笔為你收集整理的hunnu---11547 你的组合数学学得如何?的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: CSS中position详解与常见应用实
- 下一篇: IPC 共享内存