2018年的AI/ML惊喜及预测19年的走势(二)
年度回顧:2018年的AI/ML驚喜及預測19年的走勢(一)
Unravel Data首席執行官Kunal Agarwal
人工智能和機器學習的日益重視將會推動TensorFlow和H2O實現技術突破成為可能。此外,Spark和Kafka將繼續呈現引人注目的受歡迎程度。
隨著云業務模式快速成熟,企業并購交易將繼續加速。巨頭將對人工智能領先的創業公司進行大規模收購,以便在AI和ML中提供高度需求的知識產權和人才。谷歌和阿里巴巴在收購萌芽的人工智能技術方面處于領先地位,而其他一些科技巨頭將嘗試通過自主研發來模仿他們的成功。
Grammarly研究總監Joel
最近幾年,人工智能推動了理解和生成語言的界限(最值得注意的是新聞翻譯)。由于以下因素,我預計2019年更多自然語言處理(NLP)里程碑成果將會減少:
Univa總裁兼首席執行官Gary?Tyreman
混合云和專用云將推動機器學習(ML)項目的大規模增長。根據最近對超過344名技術和IT專業人士的調查顯示:在2020年,越來越多的項目將投入生產,ML將在未來兩年內實現爆炸式增長。超過80%的受訪者表示,他們計劃將混合云用于ML項目,這樣可以降低成本。Univa客戶已經在尋求指導,將他們的HPC和機器學習工作負載遷移到云或混合環境,因為他們希望將他們的ML項目推進生產。
AI/ML將進入企業應用程序。我們一直在談論人工智能是過去兩年中最熱門的趨勢之一。我們開始看到AI和機器學習穩步進入企業應用程序,用于客戶支持,欺詐分析和商業智能等任務。我們完全有理由相信這些創新將繼續在云中發生,2019年將是企業中人工智能的重要一年。
HPC和GPU將在推進機器學習項目中發揮關鍵作用。GPU在HPC中將發揮很高的價值,其中許多任務,如模擬,財務建模和3D渲染也能在并行環境中運行良好。根據HPC市場的市場研究公司Intersect 360研究表明:50種最受歡迎??的HPC應用程序包中有34種提供GPU支持,包括所有前15種HPC應用程序。因此,GPU在HPC中變得至關重要。科學家,企業研究人員,大學和研究機構都知道,加速應用程序對商業和研究來說都是有益的。
Sutherland首席分析官Puti Nagarjuna
打破障礙;?人工智能與人類恐懼之間的平衡:無論我們是否意識到,我們對人工智能的依賴比以往任何時候都更加活躍,2019年公司將齊心協力進一步了解人工智能的局限性,同時發現AI應對更細微的人類行為的方法。
越來越多人接受人工智能作為客戶體驗的第一線:消費者將更多地接受人工智能聊天機器人作為客戶體驗的第一線,更多公司將采用它們來創造超個性化和便捷的體驗。
AI將把以客戶為中心的營銷推向新的高度:隨著各種規模的公司轉向人工智能技術,通過人工智能增強趨勢分析將達到前所未有的價值水平,幫助企業評估如何優化營銷工作,作為數據驅動的一部分CMO將崛起。
機器學習追求最大價值:數據呈指數級增長,但訪問該數據的能力對于良好的ML算法并不實用。在未來一年,一個主要的挑戰將是不斷發展的算法,以產生適用于你的數據的最大值具體需要。
匯流數據架構師Gwen Shapira:
隨著越來越多的公司試圖將AI從實驗室轉移到生產中,我們將看到越來越多的工具用于管理開發生命周期。AI具有獨特的雙階段開發模型,目前的CI/CD工具鏈無法解決訓練,可重復性和數據管理方面的獨特挑戰。
許多公司意識到他們可以通過更簡單的工具獲得許多AI / ML優勢,例如規則引擎和簡單的推薦系統。我希望看到越來越多的人采用這些,既可以作為進入完全自治世界的墊腳石,也可以作為許多行業的良好解決方案。
我們將看到許多數據工程工具被重新命名為AI/ML數據管道工具。它們與通常的數據工程工具大致相同,但預算較多。我期望一個真正的以人為本的數據管道來處理訓練和生產之間的數據和模型流,特別是處理反饋循環和模型改進。
Kinetica的首席技術官兼聯合創始人:Nima Negahban
數據工程師的崛起使AI成為企業的最前沿。?去年是數據科學家的一年,企業重點關注招聘數據科學家創建高級分析和ML模型。2019年將是數據工程師的一年。數據工程師將專注于將數據科學家的工作轉化為業務的強化數據驅動軟件解決方案。這涉及創建深入的AI開發,測試,DevOps和審計流程,使公司能夠在整個企業范圍內大規模整合AI和數據管道。
人與ML形成共生關系,以推動實時業務決策。?2019年人工智能和分析的世界需要融合,以推動更有意義的業務決策。這將需要一種通用方法,將歷史批量分析、流分析、位置智能、圖形分析和人工智能結合在一個平臺中進行復雜分析。最終結果是一種新的模型,用于結合臨時分析和機器學習,比以往更快的速度提供更好的洞察力。
Oqton首席技術官兼聯合創始人:Ben Schrauwen
2018年最大的驚喜是在解決大型訓練數據集需求方面取得的進展。AlphaZero擊敗了所有以前的版本,達到了超人的水平。生成對抗網絡(GAN)正在成功應用于產生更強大的模型。此外,我們現在看到AI可以在非常具體的任務中變得如此擅長,人類無法再說出差異,例如Google Duplex在語音合成中有效地越過了神奇的山谷,為特定的狹窄領域產生了自然的聲音對話。
我預計我們會很快看到AlphaZero的方法適用于大型搜索空間的難題,甚至超越人類的專業知識。視覺和3D深度學習的進步將導致越來越多的解決方案,以幫助提高人類在特定任務中的生產力,甚至完全自動化。
MemSQL首席執行官:Nikita?Shamgunov
預測#1:現代工作負載需求將命令從NoSQL轉移到NewSQL數據庫。?由于ML,AI和邊緣計算工作負載不斷激增數據,傳統的NoSQL數據庫不再足以滿足市場對更高性能和可擴展性的需求,而不會給現有數據庫增加新的復雜性。關系數據庫已發展成更具可擴展性和快速運行的NewSQL數據庫,通過將事務和分析處理功能集成到單個數據庫中,這些數據庫能夠滿足這些需要更高數據處理能力的現代工作負載的需求。
預測#2:人工智能和機器學習計劃將要求CEO更好地了解它的基礎架構。人工智能和ML的競爭正變得比以往任何時候都更加激烈。為了使企業能夠成功部署AI和ML以實現最大化價值并降低風險,CEO和其他C級領導者需要了解其數據基礎架構的成熟度,包括如何存儲和處理數據,以確定哪些技術和人才需要推動轉型。
預測#3:AI將使員工能夠最大限度地減少勞動密集型任務。人工智能的采用有望推動新的角色和工作機會的引入,以符合公司戰略,從而變得更加以數據為導向。人工智能將幫助員工專注于更有意義的職責,例如分析洞察力和應用快速數據驅動的決策制定技能,而不是替換人來執行工作,而是幫助執行通常耗時且勞動密集的任務。
?
原文鏈接
本文為云棲社區原創內容,未經允許不得轉載。
總結
以上是生活随笔為你收集整理的2018年的AI/ML惊喜及预测19年的走势(二)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 构建可靠系统的原则与实践
- 下一篇: 这款神秘的移动端OCR引擎,如何做到“所