Amr and Pins
Description
Amr loves Geometry. One day he came up with a very interesting problem.
Amr has a circle of radius?r?and center in point?(x,?y). He wants the circle center to be in new position?(x',?y').
In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.
Help Amr to achieve his goal in minimum number of steps.
Input
Input consists of 5 space-separated integers?r,?x,?y,?x'y'?(1?≤?r?≤?105,??-?105?≤?x,?y,?x',?y'?≤?105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.
Output
Output a single integer — minimum number of steps required to move the center of the circle to the destination point.
Sample Input
Input 2 0 0 0 4 Output 1 Input 1 1 1 4 4 Output 3 Input 4 5 6 5 6 Output 0Hint
In the first sample test the optimal way is to put a pin at point?(0,?2)?and rotate the circle by?180?degrees counter-clockwise (or clockwise, no matter).
#include<iostream>
#include<math.h>
using namespace std;
int main()
{
? ? double r,x,y,x1,y1;
? ? while(cin>>r>>x>>y>>x1>>y1)
? ? {
? ? ? ? double d=sqrt((x-x1)*(x-x1)+(y-y1)*(y-y1));//直線距離最短;
? ? ? ? cout<<(int)ceil(d/(2*r))<<endl;//用函數ceil取上限;
? ? }
}
總結
以上是生活随笔為你收集整理的Amr and Pins的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: const常见用法
- 下一篇: 图结构练习——判断给定图是否存在合法拓扑