-1^2+2^2-3^2+4^2-5^2+......+n^2
生活随笔
收集整理的這篇文章主要介紹了
-1^2+2^2-3^2+4^2-5^2+......+n^2
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
The given expression can be written as:
(-1)^2 + (2)^2 + (-3)^2 + (4)^2 + (-5)^2 + ... + (n)^2
Simplifying each term, we get:
1 + 4 + 9 + 16 + 25 + ... + (n)^2
The sum of squares from 1^2 to n^2 can be calculated using the formula for the sum of consecutive square numbers:
Sum = n * (n + 1) * (2n + 1) / 6
So, the sum of the given expression is:
Sum = n * (n + 1) * (2n + 1) / 6
總結
以上是生活随笔為你收集整理的-1^2+2^2-3^2+4^2-5^2+......+n^2的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 小于()度的角是锐角,钝角一定比()度大
- 下一篇: X+Y=7,5X+2Y+3=29分别求x