bp神经网络模型的优缺点,什么是BP神经网络模型?
BP人工神經網絡
人工神經網絡(artificialneuralnetwork,ANN)指由大量與自然神經系統相類似的神經元聯結而成的網絡,是用工程技術手段模擬生物網絡結構特征和功能特征的一類人工系統。
神經網絡不但具有處理數值數據的一般計算能力,而且還具有處理知識的思維、學習、記憶能力,它采用類似于“黑箱”的方法,通過學習和記憶,找出輸入、輸出變量之間的非線性關系(映射),在執行問題和求解時,將所獲取的數據輸入到已經訓練好的網絡,依據網絡學到的知識進行網絡推理,得出合理的答案與結果。
巖土工程中的許多問題是非線性問題,變量之間的關系十分復雜,很難用確切的數學、力學模型來描述。
工程現場實測數據的代表性與測點的位置、范圍和手段有關,有時很難滿足傳統統計方法所要求的統計條件和規律,加之巖土工程信息的復雜性和不確定性,因而運用神經網絡方法實現巖土工程問題的求解是合適的。
BP神經網絡模型是誤差反向傳播(BackPagation)網絡模型的簡稱。它由輸入層、隱含層和輸出層組成。
網絡的學習過程就是對網絡各層節點間連接權逐步修改的過程,這一過程由兩部分組成:正向傳播和反向傳播。
正向傳播是輸入模式從輸入層經隱含層處理傳向輸出層;反向傳播是均方誤差信息從輸出層向輸入層傳播,將誤差信號沿原來的連接通路返回,通過修改各層神經元的權值,使得誤差信號最小。
BP神經網絡模型在建立及應用過程中,主要存在的不足和建議有以下四個方面:(1)對于神經網絡,數據愈多,網絡的訓練效果愈佳,也更能反映實際。
但在實際操作中,由于條件的限制很難選取大量的樣本值進行訓練,樣本數量偏少。(2)BP網絡模型其計算速度較慢、無法表達預測量與其相關參數之間親疏關系。
(3)以定量數據為基礎建立模型,若能收集到充分資料,以定性指標(如基坑降水方式、基坑支護模式、施工工況等)和一些易獲取的定量指標作為輸入層,以評價等級作為輸出層,這樣建立的BP網絡模型將更準確全面。
(4)BP人工神經網絡系統具有非線性、智能的特點。
較好地考慮了定性描述和定量計算、精確邏輯分析和非確定性推理等方面,但由于樣本不同,影響要素的權重不同,以及在根據先驗知識和前人的經驗總結對定性參數進行量化處理,必然會影響評價的客觀性和準確性。
因此,在實際評價中只有根據不同的基坑施工工況、不同的周邊環境條件,應不同用戶的需求,選擇不同的分析指標,才能滿足復雜工況條件下地質環境評價的要求,取得較好的應用效果。
谷歌人工智能寫作項目:神經網絡偽原創
神經網絡優缺點,
優點:(1)具有自學習功能寫作貓。例如實現圖像識別時,只在先把許多不同的圖像樣板和對應的應識別的結果輸入人工神經網絡,網絡就會通過自學習功能,慢慢學會識別類似的圖像。自學習功能對于預測有特別重要的意義。
預期未來的人工神經網絡計算機將為人類提供經濟預測、市場預測、效益預測,其應用前途是很遠大的。(2)具有聯想存儲功能。用人工神經網絡的反饋網絡就可以實現這種聯想。(3)具有高速尋找優化解的能力。
尋找一個復雜問題的優化解,往往需要很大的計算量,利用一個針對某問題而設計的反饋型人工神經網絡,發揮計算機的高速運算能力,可能很快找到優化解。
缺點:(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。(2)不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網絡就無法進行工作。
(3)把一切問題的特征都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。(4)理論和學習算法還有待于進一步完善和提高。
擴展資料:神經網絡發展趨勢人工神經網絡特有的非線性適應性信息處理能力,克服了傳統人工智能方法對于直覺,如模式、語音識別、非結構化信息處理方面的缺陷,使之在神經專家系統、模式識別、智能控制、組合優化、預測等領域得到成功應用。
人工神經網絡與其它傳統方法相結合,將推動人工智能和信息處理技術不斷發展。
近年來,人工神經網絡正向模擬人類認知的道路上更加深入發展,與模糊系統、遺傳算法、進化機制等結合,形成計算智能,成為人工智能的一個重要方向,將在實際應用中得到發展。
將信息幾何應用于人工神經網絡的研究,為人工神經網絡的理論研究開辟了新的途徑。神經計算機的研究發展很快,已有產品進入市場。光電結合的神經計算機為人工神經網絡的發展提供了良好條件。
神經網絡在很多領域已得到了很好的應用,但其需要研究的方面還很多。
其中,具有分布存儲、并行處理、自學習、自組織以及非線性映射等優點的神經網絡與其他技術的結合以及由此而來的混合方法和混合系統,已經成為一大研究熱點。
由于其他方法也有它們各自的優點,所以將神經網絡與其他方法相結合,取長補短,繼而可以獲得更好的應用效果。
目前這方面工作有神經網絡與模糊邏輯、專家系統、遺傳算法、小波分析、混沌、粗集理論、分形理論、證據理論和灰色系統等的融合。參考資料:百度百科-人工神經網絡。
神經網絡BP模型
一、BP模型概述誤差逆傳播(ErrorBack-Propagation)神經網絡模型簡稱為BP(Back-Propagation)網絡模型。
PallWerbas博士于1974年在他的博士論文中提出了誤差逆傳播學習算法。完整提出并被廣泛接受誤差逆傳播學習算法的是以Rumelhart和McCelland為首的科學家小組。
他們在1986年出版“ParallelDistributedProcessing,ExplorationsintheMicrostructureofCognition”(《并行分布信息處理》)一書中,對誤差逆傳播學習算法進行了詳盡的分析與介紹,并對這一算法的潛在能力進行了深入探討。
BP網絡是一種具有3層或3層以上的階層型神經網絡。上、下層之間各神經元實現全連接,即下層的每一個神經元與上層的每一個神經元都實現權連接,而每一層各神經元之間無連接。
網絡按有教師示教的方式進行學習,當一對學習模式提供給網絡后,神經元的激活值從輸入層經各隱含層向輸出層傳播,在輸出層的各神經元獲得網絡的輸入響應。
在這之后,按減小期望輸出與實際輸出的誤差的方向,從輸入層經各隱含層逐層修正各連接權,最后回到輸入層,故得名“誤差逆傳播學習算法”。
隨著這種誤差逆傳播修正的不斷進行,網絡對輸入模式響應的正確率也不斷提高。
BP網絡主要應用于以下幾個方面:1)函數逼近:用輸入模式與相應的期望輸出模式學習一個網絡逼近一個函數;2)模式識別:用一個特定的期望輸出模式將它與輸入模式聯系起來;3)分類:把輸入模式以所定義的合適方式進行分類;4)數據壓縮:減少輸出矢量的維數以便于傳輸或存儲。
在人工神經網絡的實際應用中,80%~90%的人工神經網絡模型采用BP網絡或它的變化形式,它也是前向網絡的核心部分,體現了人工神經網絡最精華的部分。
二、BP模型原理下面以三層BP網絡為例,說明學習和應用的原理。
1.數據定義P對學習模式(xp,dp),p=1,2,…,P;輸入模式矩陣X[N][P]=(x1,x2,…,xP);目標模式矩陣d[M][P]=(d1,d2,…,dP)。
三層BP網絡結構輸入層神經元節點數S0=N,i=1,2,…,S0;隱含層神經元節點數S1,j=1,2,…,S1;神經元激活函數f1[S1];權值矩陣W1[S1][S0];偏差向量b1[S1]。
輸出層神經元節點數S2=M,k=1,2,…,S2;神經元激活函數f2[S2];權值矩陣W2[S2][S1];偏差向量b2[S2]。
學習參數目標誤差?;初始權更新值Δ0;最大權更新值Δmax;權更新值增大倍數η+;權更新值減小倍數η-。
2.誤差函數定義對第p個輸入模式的誤差的計算公式為中國礦產資源評價新技術與評價新模型y2kp為BP網的計算輸出。
3.BP網絡學習公式推導BP網絡學習公式推導的指導思想是,對網絡的權值W、偏差b修正,使誤差函數沿負梯度方向下降,直到網絡輸出誤差精度達到目標精度要求,學習結束。
各層輸出計算公式輸入層y0i=xi,i=1,2,…,S0;隱含層中國礦產資源評價新技術與評價新模型y1j=f1(z1j),j=1,2,…,S1;輸出層中國礦產資源評價新技術與評價新模型y2k=f2(z2k),k=1,2,…,S2。
輸出節點的誤差公式中國礦產資源評價新技術與評價新模型對輸出層節點的梯度公式推導中國礦產資源評價新技術與評價新模型E是多個y2m的函數,但只有一個y2k與wkj有關,各y2m間相互獨立。
其中中國礦產資源評價新技術與評價新模型則中國礦產資源評價新技術與評價新模型設輸出層節點誤差為δ2k=(dk-y2k)·f2′(z2k),則中國礦產資源評價新技術與評價新模型同理可得中國礦產資源評價新技術與評價新模型對隱含層節點的梯度公式推導中國礦產資源評價新技術與評價新模型E是多個y2k的函數,針對某一個w1ji,對應一個y1j,它與所有的y2k有關。
因此,上式只存在對k的求和,其中中國礦產資源評價新技術與評價新模型則中國礦產資源評價新技術與評價新模型設隱含層節點誤差為中國礦產資源評價新技術與評價新模型則中國礦產資源評價新技術與評價新模型同理可得中國礦產資源評價新技術與評價新模型4.采用彈性BP算法(RPROP)計算權值W、偏差b的修正值ΔW,Δb1993年德國MartinRiedmiller和HeinrichBraun在他們的論文“ADirectAdaptiveMethodforFasterBackpropagationLearning:TheRPROPAlgorithm”中,提出ResilientBackpropagation算法——彈性BP算法(RPROP)。
這種方法試圖消除梯度的大小對權步的有害影響,因此,只有梯度的符號被認為表示權更新的方向。
權改變的大小僅僅由權專門的“更新值”確定中國礦產資源評價新技術與評價新模型其中表示在模式集的所有模式(批學習)上求和的梯度信息,(t)表示t時刻或第t次學習。
權更新遵循規則:如果導數是正(增加誤差),這個權由它的更新值減少。如果導數是負,更新值增加。中國礦產資源評價新技術與評價新模型RPROP算法是根據局部梯度信息實現權步的直接修改。
對于每個權,我們引入它的各自的更新值,它獨自確定權更新值的大小。
這是基于符號相關的自適應過程,它基于在誤差函數E上的局部梯度信息,按照以下的學習規則更新中國礦產資源評價新技術與評價新模型其中0<η-<1<η+。
在每個時刻,如果目標函數的梯度改變它的符號,它表示最后的更新太大,更新值應由權更新值減小倍數因子η-得到減少;如果目標函數的梯度保持它的符號,更新值應由權更新值增大倍數因子η+得到增大。
為了減少自由地可調參數的數目,增大倍數因子η+和減小倍數因子η–被設置到固定值η+=1.2,η-=0.5,這兩個值在大量的實踐中得到了很好的效果。
RPROP算法采用了兩個參數:初始權更新值Δ0和最大權更新值Δmax當學習開始時,所有的更新值被設置為初始值Δ0,因為它直接確定了前面權步的大小,它應該按照權自身的初值進行選擇,例如,Δ0=0.1(默認設置)。
為了使權不至于變得太大,設置最大權更新值限制Δmax,默認上界設置為Δmax=50.0。在很多實驗中,發現通過設置最大權更新值Δmax到相當小的值,例如Δmax=1.0。
我們可能達到誤差減小的平滑性能。5.計算修正權值W、偏差b第t次學習,權值W、偏差b的的修正公式W(t)=W(t-1)+ΔW(t),b(t)=b(t-1)+Δb(t),其中,t為學習次數。
6.BP網絡學習成功結束條件每次學習累積誤差平方和中國礦產資源評價新技術與評價新模型每次學習平均誤差中國礦產資源評價新技術與評價新模型當平均誤差MSE<ε,BP網絡學習成功結束。
7.BP網絡應用預測在應用BP網絡時,提供網絡輸入給輸入層,應用給定的BP網絡及BP網絡學習得到的權值W、偏差b,網絡輸入經過從輸入層經各隱含層向輸出層的“順傳播”過程,計算出BP網的預測輸出。
8.神經元激活函數f線性函數f(x)=x,f′(x)=1,f(x)的輸入范圍(-∞,+∞),輸出范圍(-∞,+∞)。一般用于輸出層,可使網絡輸出任何值。
S型函數S(x)中國礦產資源評價新技術與評價新模型f(x)的輸入范圍(-∞,+∞),輸出范圍(0,1)。f′(x)=f(x)[1-f(x)],f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,]。
一般用于隱含層,可使范圍(-∞,+∞)的輸入,變成(0,1)的網絡輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。
在用于模式識別時,可用于輸出層,產生逼近于0或1的二值輸出。雙曲正切S型函數中國礦產資源評價新技術與評價新模型f(x)的輸入范圍(-∞,+∞),輸出范圍(-1,1)。
f′(x)=1-f(x)·f(x),f′(x)的輸入范圍(-∞,+∞),輸出范圍(0,1]。
一般用于隱含層,可使范圍(-∞,+∞)的輸入,變成(-1,1)的網絡輸出,對較大的輸入,放大系數較小;而對較小的輸入,放大系數較大,所以可用來處理和逼近非線性的輸入/輸出關系。
階梯函數類型1中國礦產資源評價新技術與評價新模型f(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。f′(x)=0。
類型2中國礦產資源評價新技術與評價新模型f(x)的輸入范圍(-∞,+∞),輸出范圍{-1,1}。f′(x)=0。
斜坡函數類型1中國礦產資源評價新技術與評價新模型f(x)的輸入范圍(-∞,+∞),輸出范圍[0,1]。中國礦產資源評價新技術與評價新模型f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
類型2中國礦產資源評價新技術與評價新模型f(x)的輸入范圍(-∞,+∞),輸出范圍[-1,1]。中國礦產資源評價新技術與評價新模型f′(x)的輸入范圍(-∞,+∞),輸出范圍{0,1}。
三、總體算法1.三層BP網絡(含輸入層,隱含層,輸出層)權值W、偏差b初始化總體算法(1)輸入參數X[N][P],S0,S1,f1[S1],S2,f2[S2];(2)計算輸入模式X[N][P]各個變量的最大值,最小值矩陣Xmax[N],Xmin[N];(3)隱含層的權值W1,偏差b1初始化。
情形1:隱含層激活函數f()都是雙曲正切S型函數1)計算輸入模式X[N][P]的每個變量的范圍向量Xrng[N];2)計算輸入模式X的每個變量的范圍均值向量Xmid[N];3)計算W,b的幅度因子Wmag;4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];6)計算W[S1][S0],b[S1];7)計算隱含層的初始化權值W1[S1][S0];8)計算隱含層的初始化偏差b1[S1];9))輸出W1[S1][S0],b1[S1]。
情形2:隱含層激活函數f()都是S型函數1)計算輸入模式X[N][P]的每個變量的范圍向量Xrng[N];2)計算輸入模式X的每個變量的范圍均值向量Xmid[N];3)計算W,b的幅度因子Wmag;4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];6)計算W[S1][S0],b[S1];7)計算隱含層的初始化權值W1[S1][S0];8)計算隱含層的初始化偏差b1[S1];9)輸出W1[S1][S0],b1[S1]。
情形3:隱含層激活函數f()為其他函數的情形1)計算輸入模式X[N][P]的每個變量的范圍向量Xrng[N];2)計算輸入模式X的每個變量的范圍均值向量Xmid[N];3)計算W,b的幅度因子Wmag;4)產生[-1,1]之間均勻分布的S0×1維隨機數矩陣Rand[S1];5)產生均值為0,方差為1的正態分布的S1×S0維隨機數矩陣Randnr[S1][S0],隨機數范圍大致在[-1,1];6)計算W[S1][S0],b[S1];7)計算隱含層的初始化權值W1[S1][S0];8)計算隱含層的初始化偏差b1[S1];9)輸出W1[S1][S0],b1[S1]。
(4)輸出層的權值W2,偏差b2初始化1)產生[-1,1]之間均勻分布的S2×S1維隨機數矩陣W2[S2][S1];2)產生[-1,1]之間均勻分布的S2×1維隨機數矩陣b2[S2];3)輸出W2[S2][S1],b2[S2]。
2.應用彈性BP算法(RPROP)學習三層BP網絡(含輸入層,隱含層,輸出層)權值W、偏差b總體算法函數:Train3BP_RPROP(S0,X,P,S1,W1,b1,f1,S2,W2,b2,f2,d,TP)(1)輸入參數P對模式(xp,dp),p=1,2,…,P;三層BP網絡結構;學習參數。
(2)學習初始化1);2)各層W,b的梯度值,初始化為零矩陣。
(3)由輸入模式X求第一次學習各層輸出y0,y1,y2及第一次學習平均誤差MSE(4)進入學習循環epoch=1(5)判斷每次學習誤差是否達到目標誤差要求如果MSE<?,則,跳出epoch循環,轉到(12)。
(6)保存第epoch-1次學習產生的各層W,b的梯度值,(7)求第epoch次學習各層W,b的梯度值,1)求各層誤差反向傳播值δ;2)求第p次各層W,b的梯度值,;3)求p=1,2,…,P次模式產生的W,b的梯度值,的累加。
(8)如果epoch=1,則將第epoch-1次學習的各層W,b的梯度值,設為第epoch次學習產生的各層W,b的梯度值,。
(9)求各層W,b的更新1)求權更新值Δij更新;2)求W,b的權更新值,;3)求第epoch次學習修正后的各層W,b。
(10)用修正后各層W、b,由X求第epoch次學習各層輸出y0,y1,y2及第epoch次學習誤差MSE(11)epoch=epoch+1,如果epoch≤MAX_EPOCH,轉到(5);否則,轉到(12)。
(12)輸出處理1)如果MSE<ε,則學習達到目標誤差要求,輸出W1,b1,W2,b2。2)如果MSE≥ε,則學習沒有達到目標誤差要求,再次學習。
(13)結束3.三層BP網絡(含輸入層,隱含層,輸出層)預測總體算法首先應用Train3lBP_RPROP()學習三層BP網絡(含輸入層,隱含層,輸出層)權值W、偏差b,然后應用三層BP網絡(含輸入層,隱含層,輸出層)預測。
函數:Simu3lBP()。1)輸入參數:P個需預測的輸入數據向量xp,p=1,2,…,P;三層BP網絡結構;學習得到的各層權值W、偏差b。
2)計算P個需預測的輸入數據向量xp(p=1,2,…,P)的網絡輸出y2[S2][P],輸出預測結果y2[S2][P]。四、總體算法流程圖BP網絡總體算法流程圖見附圖2。
五、數據流圖BP網數據流圖見附圖1。
六、實例實例一全國銅礦化探異常數據BP模型分類1.全國銅礦化探異常數據準備在全國銅礦化探數據上用穩健統計學方法選取銅異常下限值33.1,生成全國銅礦化探異常數據。
2.模型數據準備根據全國銅礦化探異常數據,選取7類33個礦點的化探數據作為模型數據。
這7類分別是巖漿巖型銅礦、斑巖型銅礦、矽卡巖型、海相火山型銅礦、陸相火山型銅礦、受變質型銅礦、海相沉積型銅礦,另添加了一類沒有銅異常的模型(表8-1)。3.測試數據準備全國化探數據作為測試數據集。
4.BP網絡結構隱層數2,輸入層到輸出層向量維數分別為14,9、5、1。學習率設置為0.9,系統誤差1e-5。沒有動量項。表8-1模型數據表續表5.計算結果圖如圖8-2、圖8-3。
圖8-2圖8-3全國銅礦礦床類型BP模型分類示意圖實例二全國金礦礦石量品位數據BP模型分類1.模型數據準備根據全國金礦儲量品位數據,選取4類34個礦床數據作為模型數據,這4類分別是綠巖型金礦、與中酸性浸入巖有關的熱液型金礦、微細浸染型型金礦、火山熱液型金礦(表8-2)。
2.測試數據準備模型樣本點和部分金礦點金屬量、礦石量、品位數據作為測試數據集。3.BP網絡結構輸入層為三維,隱層1層,隱層為三維,輸出層為四維,學習率設置為0.8,系統誤差1e-4,迭代次數5000。
表8-2模型數據4.計算結果結果見表8-3、8-4。表8-3訓練學習結果表8-4預測結果(部分)續表。
bp神經網絡
BP(BackPropagation)網絡是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播算法訓練的多層前饋網絡,是目前應用最廣泛的神經網絡模型之一。
BP網絡能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系的數學方程。它的學習規則是使用最速下降法,通過反向傳播來不斷調整網絡的權值和閾值,使網絡的誤差平方和最小。
BP神經網絡模型拓撲結構包括輸入層(input)、隱層(hidelayer)和輸出層(outputlayer)。人工神經網絡就是模擬人思維的第二種方式。
這是一個非線性動力學系統,其特色在于信息的分布式存儲和并行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網絡系統所能實現的行為卻是極其豐富多彩的。
人工神經網絡首先要以一定的學習準則進行學習,然后才能工作。現以人工神經網絡對手寫“A”、“B”兩個字母的識別為例進行說明,規定當“A”輸入網絡時,應該輸出“1”,而當輸入為“B”時,輸出為“0”。
所以網絡學習的準則應該是:如果網絡作出錯誤的的判決,則通過網絡的學習,應使得網絡減少下次犯同樣錯誤的可能性。
首先,給網絡的各連接權值賦予(0,1)區間內的隨機值,將“A”所對應的圖象模式輸入給網絡,網絡將輸入模式加權求和、與門限比較、再進行非線性運算,得到網絡的輸出。
在此情況下,網絡輸出為“1”和“0”的概率各為50%,也就是說是完全隨機的。這時如果輸出為“1”(結果正確),則使連接權值增大,以便使網絡再次遇到“A”模式輸入時,仍然能作出正確的判斷。
如果輸出為“0”(即結果錯誤),則把網絡連接權值朝著減小綜合輸入加權值的方向調整,其目的在于使網絡下次再遇到“A”模式輸入時,減小犯同樣錯誤的可能性。
如此操作調整,當給網絡輪番輸入若干個手寫字母“A”、“B”后,經過網絡按以上學習方法進行若干次學習后,網絡判斷的正確率將大大提高。
這說明網絡對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網絡的各個連接權值上。當網絡再次遇到其中任何一個模式時,能夠作出迅速、準確的判斷和識別。
一般說來,網絡中所含的神經元個數越多,則它能記憶、識別的模式也就越多。如圖所示拓撲結構的單隱層前饋網絡,一般稱為三層前饋網或三層感知器,即:輸入層、中間層(也稱隱層)和輸出層。
它的特點是:各層神經元僅與相鄰層神經元之間相互全連接,同層內神經元之間無連接,各層神經元之間無反饋連接,構成具有層次結構的前饋型神經網絡系統。
單計算層前饋神經網絡只能求解線性可分問題,能夠求解非線性問題的網絡必須是具有隱層的多層神經網絡。神經網絡的研究內容相當廣泛,反映了多學科交叉技術領域的特點。
主要的研究工作集中在以下幾個方面:(1)生物原型研究。從生理學、心理學、解剖學、腦科學、病理學等生物科學方面研究神經細胞、神經網絡、神經系統的生物原型結構及其功能機理。(2)建立理論模型。
根據生物原型的研究,建立神經元、神經網絡的理論模型。其中包括概念模型、知識模型、物理化學模型、數學模型等。(3)網絡模型與算法研究。
在理論模型研究的基礎上構作具體的神經網絡模型,以實現計算機模擬或準備制作硬件,包括網絡學習算法的研究。這方面的工作也稱為技術模型研究。(4)人工神經網絡應用系統。
在網絡模型與算法研究的基礎上,利用人工神經網絡組成實際的應用系統,例如,完成某種信號處理或模式識別的功能、構作專家系統、制成機器人等等。
縱觀當代新興科學技術的發展歷史,人類在征服宇宙空間、基本粒子,生命起源等科學技術領域的進程中歷經了崎嶇不平的道路。我們也會看到,探索人腦功能和神經網絡的研究將伴隨著重重困難的克服而日新月異。
神經網絡可以用作分類、聚類、預測等。神經網絡需要有一定量的歷史數據,通過歷史數據的訓練,網絡可以學習到數據中隱含的知識。
在你的問題中,首先要找到某些問題的一些特征,以及對應的評價數據,用這些數據來訓練神經網絡。雖然BP網絡得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。
首先,由于學習速率是固定的,因此網絡的收斂速度慢,需要較長的訓練時間。
對于一些復雜問題,BP算法需要的訓練時間可能非常長,這主要是由于學習速率太小造成的,可采用變化的學習速率或自適應的學習速率加以改進。
其次,BP算法可以使權值收斂到某個值,但并不保證其為誤差平面的全局最小值,這是因為采用梯度下降法可能產生一個局部最小值。對于這個問題,可以采用附加動量法來解決。
再次,網絡隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網絡往往存在很大的冗余性,在一定程度上也增加了網絡學習的負擔。最后,網絡的學習和記憶具有不穩定性。
也就是說,如果增加了學習樣本,訓練好的網絡就需要從頭開始訓練,對于以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。
BP神經網絡的應用不足
神經網絡可以用作分類、聚類、預測等。神經網絡需要有一定量的歷史數據,通過歷史數據的訓練,網絡可以學習到數據中隱含的知識。
在你的問題中,首先要找到某些問題的一些特征,以及對應的評價數據,用這些數據來訓練神經網絡。雖然BP網絡得到了廣泛的應用,但自身也存在一些缺陷和不足,主要包括以下幾個方面的問題。
首先,由于學習速率是固定的,因此網絡的收斂速度慢,需要較長的訓練時間。
對于一些復雜問題,BP算法需要的訓練時間可能非常長,這主要是由于學習速率太小造成的,可采用變化的學習速率或自適應的學習速率加以改進。
其次,BP算法可以使權值收斂到某個值,但并不保證其為誤差平面的全局最小值,這是因為采用梯度下降法可能產生一個局部最小值。對于這個問題,可以采用附加動量法來解決。
再次,網絡隱含層的層數和單元數的選擇尚無理論上的指導,一般是根據經驗或者通過反復實驗確定。因此,網絡往往存在很大的冗余性,在一定程度上也增加了網絡學習的負擔。最后,網絡的學習和記憶具有不穩定性。
也就是說,如果增加了學習樣本,訓練好的網絡就需要從頭開始訓練,對于以前的權值和閾值是沒有記憶的。但是可以將預測、分類或聚類做的比較好的權值保存。
BP神經網絡的可行性分析
神經網絡的是我的畢業論文的一部分4.人工神經網絡人的思維有邏輯性和直觀性兩種不同的基本方式。
邏輯性的思維是指根據邏輯規則進行推理的過程;它先將信息化成概念,并用符號表示,然后,根據符號運算按串行模式進行邏輯推理。這一過程可以寫成串行的指令,讓計算機執行。
然而,直觀性的思維是將分布式存儲的信息綜合起來,結果是忽然間產生想法或解決問題的辦法。
這種思維方式的根本之點在于以下兩點:1.信息是通過神經元上的興奮模式分布在網絡上;2.信息處理是通過神經元之間同時相互作用的動態過程來完成的。人工神經網絡就是模擬人思維的第二種方式。
這是一個非線性動力學系統,其特色在于信息的分布式存儲和并行協同處理。雖然單個神經元的結構極其簡單,功能有限,但大量神經元構成的網絡系統所能實現的行為卻是極其豐富多彩的。
4.1人工神經網絡學習的原理人工神經網絡首先要以一定的學習準則進行學習,然后才能工作。
現以人工神經網絡對手寫“A”、“B”兩個字母的識別為例進行說明,規定當“A”輸入網絡時,應該輸出“1”,而當輸入為“B”時,輸出為“0”。
所以網絡學習的準則應該是:如果網絡做出錯誤的判決,則通過網絡的學習,應使得網絡減少下次犯同樣錯誤的可能性。
首先,給網絡的各連接權值賦予(0,1)區間內的隨機值,將“A”所對應的圖像模式輸入給網絡,網絡將輸入模式加權求和、與門限比較、再進行非線性運算,得到網絡的輸出。
在此情況下,網絡輸出為“1”和“0”的概率各為50%,也就是說是完全隨機的。這時如果輸出為“1”(結果正確),則使連接權值增大,以便使網絡再次遇到“A”模式輸入時,仍然能做出正確的判斷。
如果輸出為“0”(即結果錯誤),則把網絡連接權值朝著減小綜合輸入加權值的方向調整,其目的在于使網絡下次再遇到“A”模式輸入時,減小犯同樣錯誤的可能性。
如此操作調整,當給網絡輪番輸入若干個手寫字母“A”、“B”后,經過網絡按以上學習方法進行若干次學習后,網絡判斷的正確率將大大提高。
這說明網絡對這兩個模式的學習已經獲得了成功,它已將這兩個模式分布地記憶在網絡的各個連接權值上。當網絡再次遇到其中任何一個模式時,能夠做出迅速、準確的判斷和識別。
一般說來,網絡中所含的神經元個數越多,則它能記憶、識別的模式也就越多。
4.2人工神經網絡的優缺點人工神經網絡由于模擬了大腦神經元的組織方式而具有了人腦功能的一些基本特征,為人工智能的研究開辟了新的途徑,神經網絡具有的優點在于:(1)并行分布性處理因為人工神經網絡中的神經元排列并不是雜亂無章的,往往是分層或以一種有規律的序列排列,信號可以同時到達一批神經元的輸入端,這種結構非常適合并行計算。
同時如果將每一個神經元看作是一個小的處理單元,則整個系統可以是一個分布式計算系統,這樣就避免了以往的“匹配沖突”,“組合爆炸”和“無窮遞歸”等題,推理速度快。
(2)可學習性一個相對很小的人工神經網絡可存儲大量的專家知識,并且能根據學習算法,或者利用樣本指導系統來模擬現實環境(稱為有教師學習),或者對輸入進行自適應學習(稱為無教師學習),不斷地自動學習,完善知識的存儲。
(3)魯棒性和容錯性由于采用大量的神經元及其相互連接,具有聯想記憶與聯想映射能力,可以增強專家系統的容錯能力,人工神經網絡中少量的神經元發生失效或錯誤,不會對系統整體功能帶來嚴重的影響。
而且克服了傳統專家系統中存在的“知識窄臺階”問題。(4)泛化能力人工神經網絡是一類大規模的非線形系統,這就提供了系統自組織和協同的潛力。它能充分逼近復雜的非線形關系。
當輸入發生較小變化,其輸出能夠與原輸入產生的輸出保持相當小的差距。
(5)具有統一的內部知識表示形式,任何知識規則都可以通過對范例的學習存儲于同一個神經網絡的各連接權值中,便于知識庫的組織管理,通用性強。
雖然人工神經網絡有很多優點,但基于其固有的內在機理,人工神經網絡也不可避免的存在自己的弱點:(1)最嚴重的問題是沒能力來解釋自己的推理過程和推理依據。
(2)神經網絡不能向用戶提出必要的詢問,而且當數據不充分的時候,神經網絡就無法進行工作。(3)神經網絡把一切問題的特征都變為數字,把一切推理都變為數值計算,其結果勢必是丟失信息。
(4)神經網絡的理論和學習算法還有待于進一步完善和提高。4.3神經網絡的發展趨勢及在柴油機故障診斷中的可行性神經網絡為現代復雜大系統的狀態監測和故障診斷提供了全新的理論方法和技術實現手段。
神經網絡專家系統是一類新的知識表達體系,與傳統專家系統的高層邏輯模型不同,它是一種低層數值模型,信息處理是通過大量的簡單處理元件(結點)之間的相互作用而進行的。
由于它的分布式信息保持方式,為專家系統知識的獲取與表達以及推理提供了全新的方式。
它將邏輯推理與數值運算相結合,利用神經網絡的學習功能、聯想記憶功能、分布式并行信息處理功能,解決診斷系統中的不確定性知識表示、獲取和并行推理等問題。
通過對經驗樣本的學習,將專家知識以權值和閾值的形式存儲在網絡中,并且利用網絡的信息保持性來完成不精確診斷推理,較好地模擬了專家憑經驗、直覺而不是復雜的計算的推理過程。
但是,該技術是一個多學科知識交叉應用的領域,是一個不十分成熟的學科。一方面,裝備的故障相當復雜;另一方面,人工神經網絡本身尚有諸多不足之處:(1)受限于腦科學的已有研究成果。
由于生理實驗的困難性,目前對于人腦思維與記憶機制的認識還很膚淺。(2)尚未建立起完整成熟的理論體系。
目前已提出了眾多的人工神經網絡模型,歸納起來,這些模型一般都是一個由結點及其互連構成的有向拓撲網,結點間互連強度所構成的矩陣,可通過某種學習策略建立起來。但僅這一共性,不足以構成一個完整的體系。
這些學習策略大多是各行其是而無法統一于一個完整的框架之中。(3)帶有濃厚的策略色彩。這是在沒有統一的基礎理論支持下,為解決某些應用,而誘發出的自然結果。(4)與傳統計算技術的接口不成熟。
人工神經網絡技術決不能全面替代傳統計算技術,而只能在某些方面與之互補,從而需要進一步解決與傳統計算技術的接口問題,才能獲得自身的發展。
雖然人工神經網絡目前存在諸多不足,但是神經網絡和傳統專家系統相結合的智能故障診斷技術仍將是以后研究與應用的熱點。它最大限度地發揮兩者的優勢。
神經網絡擅長數值計算,適合進行淺層次的經驗推理;專家系統的特點是符號推理,適合進行深層次的邏輯推理。
智能系統以并行工作方式運行,既擴大了狀態監測和故障診斷的范圍,又可滿足狀態監測和故障診斷的實時性要求。既強調符號推理,又注重數值計算,因此能適應當前故障診斷系統的基本特征和發展趨勢。
隨著人工神經網絡的不斷發展與完善,它將在智能故障診斷中得到廣泛的應用。根據神經網絡上述的各類優缺點,目前有將神經網絡與傳統的專家系統結合起來的研究傾向,建造所謂的神經網絡專家系統。
理論分析與使用實踐表明,神經網絡專家系統較好地結合了兩者的優點而得到更廣泛的研究和應用。離心式制冷壓縮機的構造和工作原理與離心式鼓風機極為相似。
但它的工作原理與活塞式壓縮機有根本的區別,它不是利用汽缸容積減小的方式來提高汽體的壓力,而是依靠動能的變化來提高汽體壓力。
離心式壓縮機具有帶葉片的工作輪,當工作輪轉動時,葉片就帶動汽體運動或者使汽體得到動能,然后使部分動能轉化為壓力能從而提高汽體的壓力。
這種壓縮機由于它工作時不斷地將制冷劑蒸汽吸入,又不斷地沿半徑方向被甩出去,所以稱這種型式的壓縮機為離心式壓縮機。其中根據壓縮機中安裝的工作輪數量的多少,分為單級式和多級式。
如果只有一個工作輪,就稱為單級離心式壓縮機,如果是由幾個工作輪串聯而組成,就稱為多級離心式壓縮機。在空調中,由于壓力增高較少,所以一般都是采用單級,其它方面所用的離心式制冷壓縮機大都是多級的。
單級離心式制冷壓縮機的構造主要由工作輪、擴壓器和蝸殼等所組成。
壓縮機工作時制冷劑蒸汽由吸汽口軸向進入吸汽室,并在吸汽室的導流作用引導由蒸發器(或中間冷卻器)來的制冷劑蒸汽均勻地進入高速旋轉的工作輪3(工作輪也稱葉輪,它是離心式制冷壓縮機的重要部件,因為只有通過工作輪才能將能量傳給汽體)。
汽體在葉片作用下,一邊跟著工作輪作高速旋轉,一邊由于受離心力的作用,在葉片槽道中作擴壓流動,從而使汽體的壓力和速度都得到提高。
由工作輪出來的汽體再進入截面積逐漸擴大的擴壓器4(因為汽體從工作輪流出時具有較高的流速,擴壓器便把動能部分地轉化為壓力能,從而提高汽體的壓力)。汽體流過擴壓器時速度減小,而壓力則進一步提高。
經擴壓器后汽體匯集到蝸殼中,再經排氣口引導至中間冷卻器或冷凝器中。
二、離心式制冷壓縮機的特點與特性離心式制冷壓縮機與活塞式制冷壓縮機相比較,具有下列優點:(1)單機制冷量大,在制冷量相同時它的體積小,占地面積少,重量較活塞式輕5~8倍。
(2)由于它沒有汽閥活塞環等易損部件,又沒有曲柄連桿機構,因而工作可靠、運轉平穩、噪音小、操作簡單、維護費用低。(3)工作輪和機殼之間沒有摩擦,無需潤滑。
故制冷劑蒸汽與潤滑油不接觸,從而提高了蒸發器和冷凝器的傳熱性能。(4)能經濟方便的調節制冷量且調節的范圍較大。(5)對制冷劑的適應性差,一臺結構一定的離心式制冷壓縮機只能適應一種制冷劑。
(6)由于適宜采用分子量比較大的制冷劑,故只適用于大制冷量,一般都在25~30萬大卡/時以上。如制冷量太少,則要求流量小,流道窄,從而使流動阻力大,效率低。
但近年來經過不斷改進,用于空調的離心式制冷壓縮機,單機制冷量可以小到10萬大卡/時左右。制冷與冷凝溫度、蒸發溫度的關系。
由物理學可知,回轉體的動量矩的變化等于外力矩,則T=m(C2UR2-C1UR1)兩邊都乘以角速度ω,得Tω=m(C2UωR2-C1UωR1)也就是說主軸上的外加功率N為:N=m(U2C2U-U1C1U)上式兩邊同除以m則得葉輪給予單位質量制冷劑蒸汽的功即葉輪的理論能量頭。
U2C2ω2C2UR1R2ω1C1U1C2rβ離心式制冷壓縮機的特性是指理論能量頭與流量之間變化關系,也可以表示成制冷W=U2C2U-U1C1U≈U2C2U(因為進口C1U≈0)又C2U=U2-C2rctgβC2r=Vυ1/(A2υ2)故有W=U22(1-Vυ1ctgβ)A2υ2U2式中:V—葉輪吸入蒸汽的容積流量(m3/s)υ1υ2——分別為葉輪入口和出口處的蒸汽比容(m3/kg)A2、U2—葉輪外緣出口面積(m2)與圓周速度(m/s)β—葉片安裝角由上式可見,理論能量頭W與壓縮機結構、轉速、冷凝溫度、蒸發溫度及葉輪吸入蒸汽容積流量有關。
對于結構一定、轉速一定的壓縮機來說,U2、A2、β皆為常量,則理論能量頭W僅與流量V、蒸發溫度、冷凝溫度有關。
按照離心式制冷壓縮機的特性,宜采用分子量比較大的制冷劑,目前離心式制冷機所用的制冷劑有F—11、F—12、F—22、F—113和F—114等。
我國目前在空調用離心式壓縮機中應用得最廣泛的是F—11和F—12,且通常是在蒸發溫度不太低和大制冷量的情況下,選用離心式制冷壓縮機。
此外,在石油化學工業中離心式的制冷壓縮機則采用丙烯、乙烯作為制冷劑,只有制冷量特別大的離心式壓縮機才用氨作為制冷劑。
三、離心式制冷壓縮機的調節離心式制冷壓縮機和其它制冷設備共同構成一個能量供給與消耗的統一系統。
制冷機組在運行時,只有當通過壓縮機的制冷劑的流量與通過設備的流量相等時,以及壓縮機所產生的能量頭與制冷設備的阻力相適應時,制冷系統的工況才能保持穩定。
但是制冷機的負荷總是隨外界條件與用戶對冷量的使用情況而變化的,因此為了適應用戶對冷負荷變化的需要和安全經濟運行,就需要根據外界的變化對制冷機組進行調節,離心式制冷機組制冷量的調節有:1°改變壓縮機的轉速;2°采用可轉動的進口導葉;3°改變冷凝器的進水量;4°進汽節流等幾種方式,其中最常用的是轉動進口導葉調節和進汽節流兩種調節方法。
所謂轉動進口導葉調節,就是轉動壓縮機進口處的導流葉片以使進入到葉輪去的汽體產生旋繞,從而使工作輪加給汽體的動能發生變化來調節制冷量。
所謂進汽節流調節,就是在壓縮機前的進汽管道上安裝一個調節閥,如要改變壓縮機的工況時,就調節閥門的大小,通過節流使壓縮機進口的壓力降低,從而實現調節制冷量。
離心式壓縮機制冷量的調節最經濟有效的方法就是改變進口導葉角度,以改變蒸汽進入葉輪的速度方向(C1U)和流量V。但流量V必須控制在穩定工作范圍內,以免效率下降。
bp神經網絡選擇激活sigmoid函數,還有tansig函數的優缺點?求告知?
(1)對于深度神經網絡,中間的隱層的輸出必須有一個激活函數。否則多個隱層的作用和沒有隱層相同。這個激活函數不一定是sigmoid,常見的有sigmoid、tanh、relu等。
(2)對于二分類問題,輸出層是sigmoid函數。這是因為sigmoid函數可以把實數域光滑的映射到[0,1]空間。函數值恰好可以解釋為屬于正類的概率(概率的取值范圍是0~1)。
另外,sigmoid函數單調遞增,連續可導,導數形式非常簡單,是一個比較合適的函數(3)對于多分類問題,輸出層就必須是softmax函數了。softmax函數是sigmoid函數的推廣。
預測模型可分為哪幾類?
根據方法本身的性質特點將預測方法分為三類。1、定性預測方法根據人們對系統過去和現在的經驗、判斷和直覺進行預測,其中以人的邏輯判斷為主,僅要求提供系統發展的方向、狀態、形勢等定性結果。
該方法適用于缺乏歷史統計數據的系統對象。2、時間序列分析根據系統對象隨時間變化的歷史資料,只考慮系統變量隨時間的變化規律,對系統未來的表現時間進行定量預測。
主要包括移動平均法、指數平滑法、趨勢外推法等。該方法適于利用簡單統計數據預測研究對象隨時間變化的趨勢等。
3、因果關系預測系統變量之間存在某種前因后果關系,找出影響某種結果的幾個因素,建立因與果之間的數學模型,根據因素變量的變化預測結果變量的變化,既預測系統發展的方向又確定具體的數值變化規律。
擴展資料:預測模型是在采用定量預測法進行預測時,最重要的工作是建立預測數學模型。預測模型是指用于預測的,用數學語言或公式所描述的事物間的數量關系。
它在一定程度上揭示了事物間的內在規律性,預測時把它作為計算預測值的直接依據。因此,它對預測準確度有極大的影響。任何一種具體的預測方法都是以其特定的數學模型為特征。
預測方法的種類很多,各有相應的預測模型。趨勢外推預測方法是根據事物的歷史和現實數據,尋求事物隨時間推移而發展變化的規律,從而推測其未來狀況的一種常用的預測方法。
趨勢外推法的假設條件是:(1)假設事物發展過程沒有跳躍式變化,即事物的發展變化是漸進型的。
(2)假設所研究系統的結構、功能等基本保持不變,即假定根據過去資料建立的趨勢外推模型能適合未來,能代表未來趨勢變化的情況。由以上兩個假設條件可知,趨勢外推預測法是事物發展漸進過程的一種統計預測方法。
簡言之,就是運用一個數學模型,擬合一條趨勢線,然后用這個模型外推預測未來時期事物的發展。趨勢外推預測法主要利用描繪散點圖的方法(圖形識別)和差分法計算進行模型選擇。
主要優點是:可以揭示事物發展的未來,并定量地估價其功能特性。趨勢外推預測法比較適合中、長期新產品預測,要求有至少5年的數據資料。組合預測法是對同一個問題,采用多種預測方法。
組合的主要目的是綜合利用各種方法所提供的信息,盡可能地提高預測精度。
組合預測有2種基本形式,一是等權組合,即各預測方法的預測值按相同的權數組合成新的預測值;二是不等權組合,即賦予不同預測方法的預測值不同的權數。
這2種形式的原理和運用方法完全相同,只是權數的取定有所區別。根據經驗,采用不等權組合的組合預測法結果較為準確。回歸預測方法是根據自變量和因變量之間的相關關系進行預測的。
自變量的個數可以一個或多個,根據自變量的個數可分為一元回歸預測和多元回歸預測。同時根據自變量和因變量的相關關系,分為線性回歸預測方法和非線性回歸方法。
回歸問題的學習等價于函數擬合:選擇一條函數曲線使其很好的擬合已知數據且能很好的預測未知數據。參考資料:百度百科——預測模型參考資料:百度百科——定性預測。
?
總結
以上是生活随笔為你收集整理的bp神经网络模型的优缺点,什么是BP神经网络模型?的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Norton Internet Secu
- 下一篇: The processing instr