基于分段解析法的单自由度反应谱程序
生活随笔
收集整理的這篇文章主要介紹了
基于分段解析法的单自由度反应谱程序
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
這幾天剛學了分段解析法,根據崔濟東博士書里的matlab程序寫的python程序
1.引入庫
代碼如下(示例):
import numpy as np import linecache import matplotlib.pyplot as plt2.函數本身
代碼如下(示例):
def Nigam_Jennings(m,kesi,Tmin,Tmax,dT,dt,ag):Tall = np.arange(Tmin,Tmax,dT)n1 = len(Tall)SD = np.zeros(n1)SV = np.zeros(n1)SA = np.zeros(n1)PSA = np.zeros(n1)PSV = np.zeros(n1)for i in range(0,n1):T = Tall[i]wn = 2*np.pi/Tk = m*wn**2wD = wn*np.sqrt(1-kesi**2)wDdt = wD*dtwndt = wn*dte = np.exp(-kesi*wn*dt)A = e*(kesi/np.sqrt(1-kesi**2)*np.sin(wDdt) + np.cos(wDdt))B = e*np.sin(wDdt)/wDC = (2*kesi/wndt + e*(((1 - 2*kesi**2)/wDdt - kesi/np.sqrt(1-kesi**2))*np.sin(wDdt) - (1+2*kesi/wndt)*np.cos(wDdt)))/kD = (1 - 2*kesi/wndt + e*((2*kesi**2-1)/wDdt*np.sin(wDdt) + 2*kesi/wndt*np.cos(wDdt)))/kA_ = -e*wn/np.sqrt(1-kesi**2)*np.sin(wDdt)B_ = e*(np.cos(wDdt) - kesi/np.sqrt(1-kesi**2)*np.sin(wDdt))C_ = (-1/dt + e*((wn/np.sqrt(1-kesi**2) + kesi/(dt*np.sqrt(1-kesi**2)))*np.sin(wDdt) + np.cos(wDdt)/dt))/kD_ = (1 - e*(kesi/np.sqrt(1-kesi**2)*np.sin(wDdt) + np.cos(wDdt)))/(k*dt)g = 980ug = ag*gn = len(ag)u = np.zeros(n)v = np.zeros(n)P = np.zeros(n)aa = np.zeros(n)u0 = 0v0 = 0for j in range(0,n-1):if j == 0:P[j] = -m*ug[j]u[j] = u0v[j] = v0aa[j] = (-2*kesi*wn*v[j] - k/m*u[j])/gelse:P[j] = -m*ug[j]u[j] = A*u[j-1] + B*v[j-1] + C*P[j-1] + D*P[j]v[j] = A_*u[j-1] + B_*v[j-1] + C_*P[j-1] + D_*P[j]aa[j] = (-2*kesi*wn*v[j] - k/m*u[j])/gSD[i] = max(abs(u))SV[i] = max(abs(v))SA[i] = max(abs(aa))PSV[i] = wn*SD[i]PSA[i] = wn**2*SD[i]/greturn Tall,SD,SV,SA,PSA,PSV提示
ag為地震動數據,轉成一維再導入函數
總結
以上是生活随笔為你收集整理的基于分段解析法的单自由度反应谱程序的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 推荐两套大型医院信息管理系统,代码完整,
- 下一篇: DataMatrix 码提取流程