python回归方程系数计算_线性回归中的正规方程将θ系数返回为“NaN”
我試著用正規方程的方法做線性回歸。在我的數據中,我有n=143特征和m=13000培訓示例。我知道當特征數大于10000時,不推薦使用正態方程法。但我只有143個特征。我的代碼返回'nan'作為θ(線性系數)的數組。在
在我的csv文件中沒有標題的數據。因此,我在csv文件中的數據如下所示(只有前15個培訓示例,還沒有一列):2;1;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;3;0;1;0;0;0;0;0;1986;9;1;16;5;1;1.65;1;0;0;0;4;2;1;0;0;0;1;1;0;0;0;0;2.8;1;0;15000
2;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;6;0;0;1;0;0;0;0;2006;8;0;23;5;2;1.65;1;0;0;0;2;2.23;1;0;0;0;1;1;0;0;0;0;2.79;1;0;12900
1;1;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;4;0;1;0;0;0;0;0;1987;6;0;29;6;2;1;0;1;0;0;2;1;0;1;0;0;2.12;0;1;0;0;0;2.8;3;0;23438
2;1;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;1;0;0;0;2009;3;0;56;5;3;1;1;0;0;0;4;2;1;0;0;0;2;1;0;0;0;0;2.79;1;0;67000
1;1;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;10;0;1;0;0;0;0;0;1978;5;1;115;6;2;2;1;0;0;0;4;2;1;0;0;0;3;0;1;0;0;0;2.8;3;0;230000
3;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;6;0;0;1;0;0;0;0;2006;7;0;250;4.93;4;4;1;0;0;0;3.91;2.23;0;0;1;0;2.12;0;0;1;0;0;3;2;0;224000
1;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;8;0;0;1;0;0;0;0;2007;3;0;31;5;2;1;1;0;0;0;3.91;2.23;0;1;0;0;2.12;0;1;0;0;0;2.79;1;0;45000
1;1;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;4;0;1;0;0;0;0;0;1975;8;1;31;6;3;2;1;0;0;0;4;2;1;0;0;0;2;0;1;0;0;0;2.79;2;0;66000
1;1;0;0;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;5;0;0;0;1;0;0;0;1992;1;1;32;5;2.52;1.65;0;1;0;0;3.91;2.23;0;1;0;0;2.12;0;0;1;0;0;2.79;1;0;34000
1;1;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;3;0;0;1;0;0;0;0;2012;16;1;32;5;2;2;1;0;0;0;4;2;1;0;0;0;2;1;0;0;0;0;2.79;1;0;36000
2;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;8;0;1;0;0;0;0;0;1977;3;0;33;6;2;1.65;1;0;0;0;4;2.23;0;1;0;0;2.12;0;1;0;0;0;2.79;1;0;38000
2;1;0;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;8;0;0;1;0;0;0;0;2007;3;0;33;4.93;2;1;1;0;0;0;4;2.23;0;1;0;0;2.12;1;0;0;0;0;2.79;2;0;37000
1;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;8;0;1;0;0;0;0;0;1990;3;0;33;5;2;1;1;0;0;0;4;2;1;0;0;0;2;1;0;0;0;0;2.79;1;0;38000
2;1;0;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;8;0;0;1;0;0;0;0;2012;4;0;33;5;2;2;1;0;0;0;4;4;1;0;0;0;2;1;0;0;0;0;2.79;1;0;45000
3;1;0;0;0;0;0;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;7;0;0;0;0;1;0;0;1982;1;1;35;5;2;1.65;1;0;0;0;4;2.23;0;0;0;1;2;1;0;0;0;0;2.7;1;0;45000
注意:數據包含如此多的零和一的原因是我對一些特性使用了虛擬編碼。有些功能有相當數量的類。
Python代碼:
^{pr2}$
此公式用于法方程:
程序輸出(θ數組):[[ nan]
[ nan]
[ nan]
[ nan]
[ nan]
...
[ nan]]
同樣在程序中,我試圖通過代碼檢查矩陣的條件數:print np.linalg.cond(data)
這行代碼也返回了'nan'
但這一行檢查矩陣秩的代碼:print np.linalg.matrix_rank(data)
返回0。在
我需要澄清一下發生了什么事。我不知道是什么錯了,為什么我得到{}。在
總結
以上是生活随笔為你收集整理的python回归方程系数计算_线性回归中的正规方程将θ系数返回为“NaN”的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: python requests请求失败重
- 下一篇: oracle移植mysql方案_系统从M