python并发处理list数据_3种方式实现python多线程并发处理
標簽: python奇淫技巧
最優(yōu)線程數(shù)
Ncpu=CPU的數(shù)量
Ucpu=目標CPU使用率
W/C=等待時間與計算時間的比率
為保持處理器達到期望的使用率,最優(yōu)的線程池的大小等于
$$Nthreads=Ncpu*Ucpu*(1+W/C$$
cpu密集型任務,即$W<
如果希望CPU利用率為100%,則$Nthreads=Ncpu$
IO密集型任務,即系統(tǒng)大部分時間在跟I/O交互,而這個時間線程不會占用CPU來處理,即在這個時間范圍內,可以由其他線程來使用CPU,因而可以多配置一些線程。
混合型任務,二者都占有一定的時間
線城池
對于任務數(shù)量不斷增加的程序,每有一個任務就生成一個線程,最終會導致線程數(shù)量的失控。對于任務數(shù)量不端增加的程序,固定線程數(shù)量的線程池是必要的。
方法一:使用threadpool模塊
threadpool是一個比較老的模塊了,支持py2 和 py3 。
import threadpool
import time
def sayhello (a):
print("hello: "+a)
time.sleep(2)
def main():
global result
seed=["a","b","c"]
start=time.time()
task_pool=threadpool.ThreadPool(5)
requests=threadpool.makeRequests(sayhello,seed)
for req in requests:
task_pool.putRequest(req)
task_pool.wait()
end=time.time()
time_m = end-start
print("time: "+str(time_m))
start1=time.time()
for each in seed:
sayhello(each)
end1=time.time()
print("time1: "+str(end1-start1))
if __name__ == '__main__':
main(
方法二:使用concurrent.futures模塊
from concurrent.futures import ThreadPoolExecutor
import time
import time
from concurrent.futures import ThreadPoolExecutor, wait, as_completed
ll = []
def sayhello(a):
print("hello: "+a)
ll.append(a)
time.sleep(0.8)
def main():
seed=["a","b","c","e","f","g","h"]
start1=time.time()
for each in seed:
sayhello(each)
end1=time.time()
print("time1: "+str(end1-start1))
start2=time.time()
with ThreadPoolExecutor(2) as executor:
for each in seed:
executor.submit(sayhello,each)
end2=time.time()
print("time2: "+str(end2-start2))
def main2():
seed = ["a", "b", "c", "e", "f", "g", "h"]
executor = ThreadPoolExecutor(max_workers=10)
f_list = []
for each in seed:
future = executor.submit(sayhello, each)
f_list.append(future)
wait(f_list)
print(ll)
print('主線程結束')
def main3():
seed = ["a", "b", "c", "e", "f", "g", "h"]
with ThreadPoolExecutor(max_workers=2) as executor:
f_list = []
for each in seed:
future = executor.submit(sayhello, each)
f_list.append(future)
wait(f_list,return_when='ALL_COMPLETED')
print(ll)
print('主線程結束')
if __name__ == '__main__':
main3()
方法三:使用vthread模塊
demo1
import vthread
@vthread.pool(6)
def some(a,b,c):
import time;time.sleep(1)
print(a+b+c)
for i in range(10):
some(i,i,i)
demo2:分組線程池
import vthread
pool_1 = vthread.pool(5,gqueue=1) # open a threadpool with 5 threads named 1
pool_2 = vthread.pool(2,gqueue=2) # open a threadpool with 2 threads named 2
@pool_1
def foolfunc1(num):
time.sleep(1)
print(f"foolstring1, test3 foolnumb1:{num}")
@pool_2
def foolfunc2(num):
time.sleep(1)
print(f"foolstring2, test3 foolnumb2:{num}")
@pool_2
def foolfunc3(num):
time.sleep(1)
print(f"foolstring3, test3 foolnumb3:{num}")
for i in range(10): foolfunc1(i)
for i in range(4): foolfunc2(i)
for i in range(2): foolfunc3(i)
總結
以上是生活随笔為你收集整理的python并发处理list数据_3种方式实现python多线程并发处理的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: html5伪类触发机制,HTML5表单验
- 下一篇: linux7yum安装mysql,Cen