python泰坦尼克号数据预测_使用python预测泰坦尼克号生还
簡介
Titanic是Kaggle競賽的一道入門題,參賽者需要根據旅客的階級、性別、年齡、船艙種類等信息預測其是否能在海難中生還,詳細信息可以參看https://www.kaggle.com/,本文的分析代碼也取自 kaggle 中該競賽的 kernal。
數據介紹
給出的數據格式如下:
PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
數據項的含義如下:
PassengerId:乘客ID
Survived:是否生還,0表示遇難,1表示生還
Pclass:階級,1表示最高階級,3最低
Name:姓名
Sex:性別
Age:年齡
SibSp:同乘船的兄弟姐妹的數量
Parch:是否有配偶同乘,1表示是
Ticket:船票編號
Fare:恐懼指數
Cabin:船艙號
Embarked:登船港口
問題分析
這是一個比較典型的基于特征的分類問題,根據一般的數據處理流程可以將問題的求解分解成為以下步驟:
數據預處理
讀取數據,在本文代碼中使用了 python 的 pandas 包管理數據結構
特征向量化,在本文代碼中將性別和登船港口特征轉成向量化表示
處理殘缺數據,在本文代碼中將殘缺年齡用平均年齡表示,殘缺的登船港口用頻繁項表示
扔掉多余項,姓名、ID、艙號、票號在本問題中被認為是對分類沒有幫助的信息,扔掉了這些特征項
數據訓練
在本文代碼中使用了 sklearn 中的隨機森林進行分類,隨機森林每次隨機選取若干特征和數據項生成決策樹,最后采用投票的方式來生成預測結果,本文代碼中將第一列作為分類項,后n列作為特征項,隨機生成100棵決策樹對數據進行訓練
預測并生成結果
代碼實現
import pandas as pd
import numpy as np
import csv as csv
from sklearn.ensemble import RandomForestClassifier
# Data cleanup
# TRAIN DATA
train_df = pd.read_csv('train.csv', header=0) # Load the train file into a dataframe
# I need to convert all strings to integer classifiers.
# I need to fill in the missing values of the data and make it complete.
# female = 0, Male = 1
train_df['Gender'] = train_df['Sex'].map( {'female': 0, 'male': 1} ).astype(int)
# Embarked from 'C', 'Q', 'S'
# Note this is not ideal: in translating categories to numbers, Port "2" is not 2 times greater than Port "1", etc.
# All missing Embarked -> just make them embark from most common place
if len(train_df.Embarked[ train_df.Embarked.isnull() ]) > 0:
train_df.Embarked[ train_df.Embarked.isnull() ] = train_df.Embarked.dropna().mode().values
Ports = list(enumerate(np.unique(train_df['Embarked']))) # determine all values of Embarked,
Ports_dict = { name : i for i, name in Ports } # set up a dictionary in the form Ports : index
train_df.Embarked = train_df.Embarked.map( lambda x: Ports_dict[x]).astype(int) # Convert all Embark strings to int
# All the ages with no data -> make the median of all Ages
median_age = train_df['Age'].dropna().median()
if len(train_df.Age[ train_df.Age.isnull() ]) > 0:
train_df.loc[ (train_df.Age.isnull()), 'Age'] = median_age
# Remove the Name column, Cabin, Ticket, and Sex (since I copied and filled it to Gender)
train_df = train_df.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'PassengerId'], axis=1)
# TEST DATA
test_df = pd.read_csv('test.csv', header=0) # Load the test file into a dataframe
# I need to do the same with the test data now, so that the columns are the same as the training data
# I need to convert all strings to integer classifiers:
# female = 0, Male = 1
test_df['Gender'] = test_df['Sex'].map( {'female': 0, 'male': 1} ).astype(int)
# Embarked from 'C', 'Q', 'S'
# All missing Embarked -> just make them embark from most common place
if len(test_df.Embarked[ test_df.Embarked.isnull() ]) > 0:
test_df.Embarked[ test_df.Embarked.isnull() ] = test_df.Embarked.dropna().mode().values
# Again convert all Embarked strings to int
test_df.Embarked = test_df.Embarked.map( lambda x: Ports_dict[x]).astype(int)
# All the ages with no data -> make the median of all Ages
median_age = test_df['Age'].dropna().median()
if len(test_df.Age[ test_df.Age.isnull() ]) > 0:
test_df.loc[ (test_df.Age.isnull()), 'Age'] = median_age
# All the missing Fares -> assume median of their respective class
if len(test_df.Fare[ test_df.Fare.isnull() ]) > 0:
median_fare = np.zeros(3)
for f in range(0,3): # loop 0 to 2
median_fare[f] = test_df[ test_df.Pclass == f+1 ]['Fare'].dropna().median()
for f in range(0,3): # loop 0 to 2
test_df.loc[ (test_df.Fare.isnull()) & (test_df.Pclass == f+1 ), 'Fare'] = median_fare[f]
# Collect the test data's PassengerIds before dropping it
ids = test_df['PassengerId'].values
# Remove the Name column, Cabin, Ticket, and Sex (since I copied and filled it to Gender)
test_df = test_df.drop(['Name', 'Sex', 'Ticket', 'Cabin', 'PassengerId'], axis=1)
# The data is now ready to go. So lets fit to the train, then predict to the test!
# Convert back to a numpy array
train_data = train_df.values
test_data = test_df.values
print 'Training...'
forest = RandomForestClassifier(n_estimators=100)
forest = forest.fit( train_data[0::,1::], train_data[0::,0] )
print 'Predicting...'
output = forest.predict(test_data).astype(int)
predictions_file = open("myfirstforest.csv", "wb")
open_file_object = csv.writer(predictions_file)
open_file_object.writerow(["PassengerId","Survived"])
open_file_object.writerows(zip(ids, output))
predictions_file.close()
print 'Done.'
后續思考
這是一個比較簡單流程也較為完整的解決方案,但是也存在一些問題,比如
沒有對測試結果的準確率和召回率進行評估
模型的參數選擇是否可以進一步調整取得更好的效果?
如果采用一些集成學習的辦法效果會不會進一步提升?
創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎總結
以上是生活随笔為你收集整理的python泰坦尼克号数据预测_使用python预测泰坦尼克号生还的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 现代软件工程 M1 博客要求
- 下一篇: easyui label显示不全_eas