并查集算法c语言版,并查集及其C程序实现.doc
并查集及其C程序實現
等價關系與等價類
從數學上看,等價類是一個對象(或成員)的集合,在此集合中的所有對象應滿足等價關系。若用符號"≡"表示集合上的等價關系,那么對于該集合中的任意對象x,y, z,下列性質成立:
1、自反性:x ≡ x
2、對稱性:若 x ≡ y 則 y ≡ x
3、傳遞性:若 x ≡ y 且 y ≡ z 則 x ≡ z
因此,等價關系是集合上的一個自反、對稱、傳遞的關系。
通過金屬線連接起來的電器的連通性,就是一種等價關系。這種關系顯然具有自反性,因為任何一個器件都是與自身連通的;如果a 電連通b,那么b一定也電連通a,因此這種關系具有對稱性; 若a連通到b,并且b連通到c,那么a連通到c 。
并查集
并查集的一般用途就是用來維護某種具有自反、對稱、傳遞性質的關系的等價類。并查集一般以樹形結構存儲,多棵樹構成一個森林,每棵樹構成一個集合,樹中的每個節點就是該集合的元素,找一個代表元素作為該樹(集合)的祖先。
并查集支持以下三種操作:
1、Make_Set(x) 把每一個元素初始化為一個集合
初始化后每一個元素的父親節點是它本身,每一個元素的祖先節點也是它本身。
2、Find_Set(x) 查找一個元素所在的集合
查找一個元素所在的集合,只要找到這個元素所在集合的祖先即可。判斷兩個元素是否屬于同一集合,只要看他們所在集合的祖先是否相同即可。
3、Union(x,y) 合并x,y所在的兩個集合
合并兩個不相交集合操作很簡單:首先設置一個數組Father[x],表示x的"父親"的編號。那么,合并兩個不相交集合的方法就是,找到其中一個集合的祖先,將另外一個集合的祖先指向它。
并查集的優化
1、Find_Set(x)時 路徑壓縮
尋找祖先時我們一般采用遞歸查找,但是當元素很多亦或是整棵樹變為一條鏈時,每次Find_Set(x)都是O(n)的復雜度,有沒有辦法減小這個復雜度呢?
答案是肯定的,這就是路徑壓縮,即當我們經過"遞推"找到祖先節點后,"回歸"的時候順便將它的子孫節點都直接指向祖先,這樣以后再次Find_Set(x)時復雜度就變成O(1)了。
2、Union(x,y)時 按秩合并
即合并的時候將元素少的集合合并到元素多的集合中,這樣合并之后樹的高度會相對較小。
主要代碼實現/* father[x]表示x的父節點 */
int father[MAX];
/* rank[x]表示x的秩 */
int rank[MAX];1
2
3
4
5
6/* 初始化集合 */
void Make_Set(int x)
{
father[x] = x;
rank[x] = 0;
}
1
2
3
4
5
6
7
8
9/* 查找x元素所在的集合,回溯時壓縮路徑 */
int Find_Set(int x)
{
if (x != father[x])
{
father[x] = Find_Set(father[x]);
}
return father[x];
}1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19/* 按秩合并x,y所在的集合 */
void Union(int x, int y)
{
x = Find_Set(x);
y = Find_Set(y);
if (x == y) return;
if (rank[x] > rank[y])
{
father[y] = x;
}
else
{
if (rank[x] == rank[y])
{
rank[y]++;
}
father[x] = y;
}
}
總結
以上是生活随笔為你收集整理的并查集算法c语言版,并查集及其C程序实现.doc的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: php保存rar,php 解压rar文件
- 下一篇: 如何保证添加自定义对象元素的唯一性