python indices_python numpy triu_indices函数
numpy.triu_indices
返回函數的上三角矩陣
numpy.
triu_indices
(
n,
k=0,
m=None
)
[source]
Return the indices for the upper-triangle of an (n, m) array.
Parameters:? n : int
The size of the arrays for which the returned indices will be valid.
k : int, optional
Diagonal offset (see triu for details).
m : int, optional
New in version 1.9.0.
The column dimension of the arrays for which the returned arrays will be valid. By default m is taken equal to n.
Returns:? inds : tuple, shape(2) of ndarrays, shape(n)
The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(n, n).
See also
tril_indices
similar function, for lower-triangular.
mask_indices
generic function accepting an arbitrary mask function.
triu, tril
Notes
New in version 1.4.0.
Examples
Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right:
>>>
>>> iu1 = np.triu_indices(4)
>>> iu2 = np.triu_indices(4, 2)
Here is how they can be used with a sample array:
>>>
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0,? 1,? 2,? 3],
[ 4,? 5,? 6,? 7],
[ 8,? 9, 10, 11],
[12, 13, 14, 15]])
Both for indexing:
>>>
>>> a[iu1]
array([ 0,? 1,? 2,? 3,? 5,? 6,? 7, 10, 11, 15])
And for assigning values:
>>>
>>> a[iu1] = -1
>>> a
array([[-1, -1, -1, -1],
[ 4, -1, -1, -1],
[ 8,? 9, -1, -1],
[12, 13, 14, -1]])
These cover only a small part of the whole array (two diagonals right of the main one):
>>>
>>> a[iu2] = -10
>>> a
array([[ -1,? -1, -10, -10],
[? 4,? -1,? -1, -10],
[? 8,? ?9,? -1,? -1],
[ 12,? 13,? 14,? -1]])
總結
以上是生活随笔為你收集整理的python indices_python numpy triu_indices函数的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: stackexchange.mysql_
- 下一篇: oracle11g session,Or