python2d 平滑插值处理_python中平滑的、通用的2D线性插值
我已經設法寫了一個符合我的目的的函數(shù)。它通過沿網格線插值,然后在x和y方向插值平面,并取兩者的平均值,從坐標網格中插值(填充)平面。在
通過將坐標重塑為一維矢量,一次性插值平面,然后再重新塑造為二維,應該可以稍微加快這一速度。但是,對于合理的平面尺寸來說,這個代碼已經足夠快了。在
如果坐標也在平面外,似乎也可以工作。
如果網格近似規(guī)則,則外推法也有效。不管怎樣,它都會外推,但是隨著柵格不規(guī)則度的增加,你會看到一些尖銳的折痕遠離邊緣。在
這是密碼。docstring中提供了一個示例。在def interlin2d(x,y,z,fsize):
"""
Linear 2D interpolation of a plane from arbitrary gridded points.
:param x: 2D array of x coordinates
:param y: 2D array of y coordinates
:param z: 2D array of z coordinates
:param fsize: Tuple of x and y dimensions of plane to be interpolated.
:return: 2D array with interpolated plane.
This function works by interpolating lines along the grid point in both dimensions,
then interpolating the plane area in both the x and y directions, and taking the
average of the two. Result looks like a series of approximately curvilinear quadrilaterals.
Note, the structure of the x,y,z coordinate arrays are such that the index of the coordinates
indicates the relative physical position of the point with respect to the plane to be interpoalted.
Plane is allowed to be a subset of the range of grid coordinates provided.
Extrapolation is accounted for, however sharp creases will start to appear
in the extrapolated region as the grid of coordinates becomes increasingly irregular.
Scipy's interpolation function is used for the grid lines as it allows for proper linear extrapolation.
However Numpy's interpolation function is used for the plane itself as it is robust against gridlines
that overlap (divide by zero distance).
Example:
#set up number of grid lines and size of field to interpolate
nlines=[3,3]
fsize=(100,100,100)
#initialize the coordinate arrays
x=np.empty((nlines[0],nlines[1]))
y=np.empty((nlines[0],nlines[1]))
z=np.random.uniform(0.25*fsize[2],0.75*fsize[2],(nlines[0],nlines[1]))
#set random ordered locations for the interior points
spacings=(fsize[0]/(nlines[0]-2),fsize[1]/(nlines[1]-2))
for k in range(0, nlines[0]):
for l in range(0, nlines[1]):
x[k, l] = round(random.uniform(0, 1) * (spacings[0] - 1) + spacings[0] * (k - 1) + 1)
y[k, l] = round(random.uniform(0, 1) * (spacings[1] - 1) + spacings[1] * (l - 1) + 1)
#fix the edge points to the edge
x[0, :] = 0
x[-1, :] = fsize[1]-1
y[:, 0] = 0
y[:, -1] = fsize[0]-1
field = interlin2d(x,y,z,fsize)
"""
from scipy.interpolate import interp1d
import numpy as np
#number of lines in grid in x and y directions
nsegx=x.shape[0]
nsegy=x.shape[1]
#lines along the grid points to be interpolated, x and y directions
#0 indicates own axis, 1 is height (z axis)
intlinesx=np.empty((2,nsegy,fsize[0]))
intlinesy=np.empty((2,nsegx,fsize[1]))
#account for the first and last points being fixed to the edges
intlinesx[0,0,:]=0
intlinesx[0,-1,:]=fsize[1]-1
intlinesy[0,0,:]=0
intlinesy[0,-1,:]=fsize[0]-1
#temp fields for interpolation in x and y directions
tempx=np.empty((fsize[0],fsize[1]))
tempy=np.empty((fsize[0],fsize[1]))
#interpolate grid lines in the x direction
for k in range(nsegy):
interp = interp1d(x[:,k], y[:,k], kind='linear', copy=False, fill_value='extrapolate')
intlinesx[0,k,:] = np.round(interp(range(fsize[0])))
interp = interp1d(x[:, k], z[:, k], kind='linear', copy=False, fill_value='extrapolate')
intlinesx[1, k, :] = interp(range(fsize[0]))
intlinesx[0,:,:].sort(0)
# interpolate grid lines in the y direction
for k in range(nsegx):
interp = interp1d(y[k, :], x[k, :], kind='linear', copy=False, fill_value='extrapolate')
intlinesy[0, k, :] = np.round(interp(range(fsize[1])))
interp = interp1d(y[k, :], z[k, :], kind='linear', copy=False, fill_value='extrapolate')
intlinesy[1, k, :] = interp(range(fsize[1]))
intlinesy[0,:,:].sort(0)
#interpolate plane in x direction
for k in range(fsize[1]):
tempx[k, :] = np.interp(range(fsize[1]),intlinesx[0,:,k], intlinesx[1,:,k])
#interpolate plane in y direction
for k in range(fsize[1]):
tempy[:, k] = np.interp(range(fsize[0]), intlinesy[0, :, k], intlinesy[1, :, k])
return (tempx+tempy)/2
總結
以上是生活随笔為你收集整理的python2d 平滑插值处理_python中平滑的、通用的2D线性插值的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 漂亮的html页面源码_爬虫数据分析之h
- 下一篇: 字符串匹配算法(AC自动机 Aho-Co