import numpy as np
import h5py
import matplotlib.pyplot as plt%matplotlib inline
plt.rcParams['figure.figsize']=(5.0,4.0)# set default size of plots
plt.rcParams['image.interpolation']='nearest'
plt.rcParams['image.cmap']='gray'%load_ext autoreload
%autoreload 2np.random.seed(1)
2. 模型框架
3. 卷積神經(jīng)網(wǎng)絡
卷積神經(jīng)網(wǎng)絡會將輸入轉化為一個維度大小不一樣的輸出
3.1 Zero-Padding
0 padding 會在圖片周圍填充 0 元素(下圖 p=2p=2p=2 )
padding 的好處:
減少深層網(wǎng)絡里,圖片尺寸衰減問題
保留更多的圖片邊緣的信息
# 給第2、4個維度 padding 1層,3層像素
a = np.pad(a,((0,0),(1,1),(0,0),(3,3),(0,0)),'constant', constant_values =(..,..))# GRADED FUNCTION: zero_paddefzero_pad(X, pad):"""Pad with zeros all images of the dataset X. The padding is applied to the height and width of an image, as illustrated in Figure 1.Argument:X -- python numpy array of shape (m, n_H, n_W, n_C) representing a batch of m imagespad -- integer, amount of padding around each image on vertical and horizontal dimensionsReturns:X_pad -- padded image of shape (m, n_H + 2*pad, n_W + 2*pad, n_C)"""### START CODE HERE ### (≈ 1 line)X_pad = np.pad(X,((0,0),# 樣本(pad,pad),# 高(pad,pad),# 寬(0,0)),# 通道'constant', constant_values=(0))### END CODE HERE ###return X_pad
3.2 單步卷積
# GRADED FUNCTION: conv_single_stepdefconv_single_step(a_slice_prev, W, b):"""Apply one filter defined by parameters W on a single slice (a_slice_prev) of the output activation of the previous layer.Arguments:a_slice_prev -- slice of input data of shape (f, f, n_C_prev)W -- Weight parameters contained in a window - matrix of shape (f, f, n_C_prev)b -- Bias parameters contained in a window - matrix of shape (1, 1, 1)Returns:Z -- a scalar value, result of convolving the sliding window (W, b) on a slice x of the input data"""### START CODE HERE ### (≈ 2 lines of code)# Element-wise product between a_slice and W. Do not add the bias yet.s = a_slice_prev*W# Sum over all entries of the volume s.Z = np.sum(s)# Add bias b to Z. Cast b to a float() so that Z results in a scalar value.Z = Z +float(b)### END CODE HERE ###return Z
# GRADED FUNCTION: conv_forwarddefconv_forward(A_prev, W, b, hparameters):"""Implements the forward propagation for a convolution functionArguments:A_prev -- output activations of the previous layer, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)W -- Weights, numpy array of shape (f, f, n_C_prev, n_C)b -- Biases, numpy array of shape (1, 1, 1, n_C)hparameters -- python dictionary containing "stride" and "pad"Returns:Z -- conv output, numpy array of shape (m, n_H, n_W, n_C)cache -- cache of values needed for the conv_backward() function"""### START CODE HERE #### Retrieve dimensions from A_prev's shape (≈1 line) (m, n_H_prev, n_W_prev, n_C_prev)= A_prev.shape# Retrieve dimensions from W's shape (≈1 line)(f, f, n_C_prev, n_C)= W.shape# Retrieve information from "hparameters" (≈2 lines)stride = hparameters['stride']pad = hparameters['pad']# Compute the dimensions of the CONV output volume using the formula given above. # Hint: use int() to floor. (≈2 lines)n_H =(n_H_prev-f+2*pad)//stride +1n_W =(n_W_prev-f+2*pad)//stride +1# Initialize the output volume Z with zeros. (≈1 line)Z = np.zeros((m, n_H, n_W, n_C))# Create A_prev_pad by padding A_prevA_prev_pad = zero_pad(A_prev, pad)for i inrange(m):# loop over the batch of training examplesa_prev_pad = A_prev_pad[i,:]# Select ith training example's padded activationfor h inrange(n_H):# loop over vertical axis of the output volumefor w inrange(n_W):# loop over horizontal axis of the output volumefor c inrange(n_C):# loop over channels (= #filters) of the output volume# Find the corners of the current "slice" (≈4 lines)vert_start = h*stridevert_end = vert_start + fhoriz_start = w*stridehoriz_end = horiz_start + f# Use the corners to define the (3D) slice of a_prev_pad (See Hint above the cell). (≈1 line)a_slice_prev = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end,:]# Convolve the (3D) slice with the correct filter W and bias b, to get back one output neuron. (≈1 line)Z[i, h, w, c]= np.sum(conv_single_step(a_slice_prev, W[:,:,:,c], b[:,:,:,c]))### END CODE HERE #### Making sure your output shape is correctassert(Z.shape ==(m, n_H, n_W, n_C))# Save information in "cache" for the backpropcache =(A_prev, W, b, hparameters)return Z, cache
# GRADED FUNCTION: pool_forwarddefpool_forward(A_prev, hparameters, mode ="max"):"""Implements the forward pass of the pooling layerArguments:A_prev -- Input data, numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)hparameters -- python dictionary containing "f" and "stride"mode -- the pooling mode you would like to use, defined as a string ("max" or "average")Returns:A -- output of the pool layer, a numpy array of shape (m, n_H, n_W, n_C)cache -- cache used in the backward pass of the pooling layer, contains the input and hparameters """# Retrieve dimensions from the input shape(m, n_H_prev, n_W_prev, n_C_prev)= A_prev.shape# Retrieve hyperparameters from "hparameters"f = hparameters["f"]stride = hparameters["stride"]# Define the dimensions of the outputn_H =1+(n_H_prev - f)// striden_W =1+(n_W_prev - f)// striden_C = n_C_prev# Initialize output matrix AA = np.zeros((m, n_H, n_W, n_C))### START CODE HERE ###for i inrange(m):# loop over the training examplesfor h inrange(n_H):# loop on the vertical axis of the output volumefor w inrange(n_W):# loop on the horizontal axis of the output volumefor c inrange(n_C):# loop over the channels of the output volume# Find the corners of the current "slice" (≈4 lines)vert_start = h*stridevert_end = vert_start + fhoriz_start = w*stridehoriz_end = horiz_start + f# Use the corners to define the current slice on the ith training example of A_prev, channel c. (≈1 line)a_prev_slice = A_prev[i, vert_start:vert_end, horiz_start:horiz_end, c]# Compute the pooling operation on the slice. Use an if statment to differentiate the modes. Use np.max/np.mean.if mode =="max":A[i, h, w, c]= np.max(a_prev_slice)elif mode =="average":A[i, h, w, c]= np.mean(a_prev_slice)### END CODE HERE #### Store the input and hparameters in "cache" for pool_backward()cache =(A_prev, hparameters)# Making sure your output shape is correctassert(A.shape ==(m, n_H, n_W, n_C))return A, cache
db[:,:,:,c]+= dZ[i, h, w, c]defconv_backward(dZ, cache):"""Implement the backward propagation for a convolution functionArguments:dZ -- gradient of the cost with respect to the output of the conv layer (Z), numpy array of shape (m, n_H, n_W, n_C)cache -- cache of values needed for the conv_backward(), output of conv_forward()Returns:dA_prev -- gradient of the cost with respect to the input of the conv layer (A_prev),numpy array of shape (m, n_H_prev, n_W_prev, n_C_prev)dW -- gradient of the cost with respect to the weights of the conv layer (W)numpy array of shape (f, f, n_C_prev, n_C)db -- gradient of the cost with respect to the biases of the conv layer (b)numpy array of shape (1, 1, 1, n_C)"""### START CODE HERE #### Retrieve information from "cache"(A_prev, W, b, hparameters)= cache# Retrieve dimensions from A_prev's shape(m, n_H_prev, n_W_prev, n_C_prev)= A_prev.shape# Retrieve dimensions from W's shape(f, f, n_C_prev, n_C)= W.shape# Retrieve information from "hparameters"stride = hparameters['stride']pad = hparameters['pad']# Retrieve dimensions from dZ's shape(m, n_H, n_W, n_C)= dZ.shape# Initialize dA_prev, dW, db with the correct shapesdA_prev = np.zeros(A_prev.shape) dW = np.zeros(W.shape)db = np.zeros((1,1,1, n_C))# Pad A_prev and dA_prev, 添加周圍pad像素A_prev_pad = zero_pad(A_prev, pad)dA_prev_pad = zero_pad(dA_prev, pad)for i inrange(m):# loop over the training examples# select ith training example from A_prev_pad and dA_prev_pada_prev_pad = A_prev_pad[i]da_prev_pad = dA_prev_pad[i]for h inrange(n_H):# loop over vertical axis of the output volumefor w inrange(n_W):# loop over horizontal axis of the output volumefor c inrange(n_C):# loop over the channels of the output volume# Find the corners of the current "slice"vert_start = h*stridevert_end = vert_start + fhoriz_start = w*stridehoriz_end = horiz_start + f# Use the corners to define the slice from a_prev_pada_slice = a_prev_pad[vert_start:vert_end, horiz_start:horiz_end,:]# Update gradients for the window and the filter's parameters using the code formulas given aboveda_prev_pad[vert_start:vert_end, horiz_start:horiz_end,:]+= W[:,:,:,c]*dZ[i,h,w,c]dW[:,:,:,c]+= a_slice*dZ[i,h,w,c]db[:,:,:,c]+= dZ[i,h,w,c]# Set the ith training example's dA_prev to the unpaded da_prev_pad (Hint: use X[pad:-pad, pad:-pad, :])dA_prev[i,:,:,:]= da_prev_pad[pad:-pad, pad:-pad,:]### END CODE HERE #### Making sure your output shape is correctassert(dA_prev.shape ==(m, n_H_prev, n_W_prev, n_C_prev))return dA_prev, dW, db
defcreate_mask_from_window(x):"""Creates a mask from an input matrix x, to identify the max entry of x.Arguments:x -- Array of shape (f, f)Returns:mask -- Array of the same shape as window, contains a True at the position corresponding to the max entry of x."""### START CODE HERE ### (≈1 line)mask =(x == np.max(x))### END CODE HERE ###return mask
defdistribute_value(dz, shape):"""Distributes the input value in the matrix of dimension shapeArguments:dz -- input scalarshape -- the shape (n_H, n_W) of the output matrix for which we want to distribute the value of dzReturns:a -- Array of size (n_H, n_W) for which we distributed the value of dz"""### START CODE HERE #### Retrieve dimensions from shape (≈1 line)(n_H, n_W)= shape# Compute the value to distribute on the matrix (≈1 line)average = dz/(n_H*n_W)# Create a matrix where every entry is the "average" value (≈1 line)a =np.ones((n_H, n_W))*average### END CODE HERE ###return a
5.2.3 組合在一起 - 反向池化
defpool_backward(dA, cache, mode ="max"):"""Implements the backward pass of the pooling layerArguments:dA -- gradient of cost with respect to the output of the pooling layer, same shape as Acache -- cache output from the forward pass of the pooling layer, contains the layer's input and hparameters mode -- the pooling mode you would like to use, defined as a string ("max" or "average")Returns:dA_prev -- gradient of cost with respect to the input of the pooling layer, same shape as A_prev"""### START CODE HERE #### Retrieve information from cache (≈1 line)(A_prev, hparameters)= cache# Retrieve hyperparameters from "hparameters" (≈2 lines)stride = hparameters['stride']f = hparameters['f']# Retrieve dimensions from A_prev's shape and dA's shape (≈2 lines)m, n_H_prev, n_W_prev, n_C_prev = A_prev.shapem, n_H, n_W, n_C = dA.shape# Initialize dA_prev with zeros (≈1 line)dA_prev = np.zeros(A_prev.shape)for i inrange(m):# loop over the training examples# select training example from A_prev (≈1 line)a_prev = A_prev[i]for h inrange(n_H):# loop on the vertical axisfor w inrange(n_W):# loop on the horizontal axisfor c inrange(n_C):# loop over the channels (depth)# Find the corners of the current "slice" (≈4 lines)vert_start = h*stridevert_end = vert_start + fhoriz_start = w*stridehoriz_end = horiz_start + f# Compute the backward propagation in both modes.if mode =="max":# Use the corners and "c" to define the current slice from a_prev (≈1 line)a_prev_slice = a_prev[vert_start:vert_end, horiz_start:horiz_end, c]# Create the mask from a_prev_slice (≈1 line)mask = create_mask_from_window(a_prev_slice)# Set dA_prev to be dA_prev + (the mask multiplied by the correct entry of dA) (≈1 line)dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c]+= mask*dA[i, h, w, c]elif mode =="average":# Get the value a from dA (≈1 line)da = dA[i, vert_start, horiz_start, c]# Define the shape of the filter as fxf (≈1 line)shape =(f, f)# Distribute it to get the correct slice of dA_prev. i.e. Add the distributed value of da. (≈1 line)dA_prev[i, vert_start: vert_end, horiz_start: horiz_end, c]+= distribute_value(da, shape)### END CODE #### Making sure your output shape is correctassert(dA_prev.shape == A_prev.shape)return dA_prev
import math
import numpy as np
import h5py
import matplotlib.pyplot as plt
import scipy
from PIL import Image
from scipy import ndimage
import tensorflow as tf
from tensorflow.python.framework import ops
from cnn_utils import*%matplotlib inline
np.random.seed(1)import sys
sys.path.append('/path/file')# Loading the data (signs)
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
手勢數(shù)字數(shù)據(jù)集:
查看圖片
# Example of a picture
index =7
plt.imshow(X_train_orig[index])print("y = "+str(np.squeeze(Y_train_orig[:, index])))
y =1
了解數(shù)據(jù)維度
X_train = X_train_orig/255.# 歸一化
X_test = X_test_orig/255.
Y_train = convert_to_one_hot(Y_train_orig,6).T
Y_test = convert_to_one_hot(Y_test_orig,6).T
print("number of training examples = "+str(X_train.shape[0]))print("number of test examples = "+str(X_test.shape[0]))print("X_train shape: "+str(X_train.shape))print("Y_train shape: "+str(Y_train.shape))print("X_test shape: "+str(X_test.shape))print("Y_test shape: "+str(Y_test.shape))
conv_layers ={}
輸出:
number of training examples =1080
number of test examples =120
X_train shape:(1080,64,64,3)
Y_train shape:(1080,6)
X_test shape:(120,64,64,3)
Y_test shape:(120,6)
# GRADED FUNCTION: create_placeholdersdefcreate_placeholders(n_H0, n_W0, n_C0, n_y):"""Creates the placeholders for the tensorflow session.Arguments:n_H0 -- scalar, height of an input imagen_W0 -- scalar, width of an input imagen_C0 -- scalar, number of channels of the inputn_y -- scalar, number of classesReturns:X -- placeholder for the data input, of shape [None, n_H0, n_W0, n_C0] and dtype "float"Y -- placeholder for the input labels, of shape [None, n_y] and dtype "float""""### START CODE HERE ### (≈2 lines)X = tf.placeholder(tf.float32, shape=(None, n_H0, n_W0, n_C0), name='X')Y = tf.placeholder(tf.float32, shape=(None, n_y), name='Y')### END CODE HERE ###return X, Y
# GRADED FUNCTION: compute_cost defcompute_cost(Z3, Y):"""Computes the costArguments:Z3 -- output of forward propagation (output of the last LINEAR unit), of shape (6, number of examples)Y -- "true" labels vector placeholder, same shape as Z3Returns:cost - Tensor of the cost function"""### START CODE HERE ### (1 line of code)cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=Z3, labels=Y))### END CODE HERE ###return cost
tf.reset_default_graph()with tf.Session()as sess:np.random.seed(1)X, Y = create_placeholders(64,64,3,6)parameters = initialize_parameters()Z3 = forward_propagation(X, parameters)cost = compute_cost(Z3, Y)init = tf.global_variables_initializer()sess.run(init)a = sess.run(cost,{X: np.random.randn(4,64,64,3), Y: np.random.randn(4,6)})print("cost = "+str(a))
輸出:
cost =4.6648693# 跟標準答案不一樣
1.5 模型
創(chuàng)建 placeholders
初始化參數(shù)
前向傳播
計算損失
創(chuàng)建優(yōu)化器
# GRADED FUNCTION: modeldefmodel(X_train, Y_train, X_test, Y_test, learning_rate =0.009,num_epochs =100, minibatch_size =64, print_cost =True):"""Implements a three-layer ConvNet in Tensorflow:CONV2D -> RELU -> MAXPOOL -> CONV2D -> RELU -> MAXPOOL -> FLATTEN -> FULLYCONNECTEDArguments:X_train -- training set, of shape (None, 64, 64, 3)Y_train -- test set, of shape (None, n_y = 6)X_test -- training set, of shape (None, 64, 64, 3)Y_test -- test set, of shape (None, n_y = 6)learning_rate -- learning rate of the optimizationnum_epochs -- number of epochs of the optimization loopminibatch_size -- size of a minibatchprint_cost -- True to print the cost every 100 epochsReturns:train_accuracy -- real number, accuracy on the train set (X_train)test_accuracy -- real number, testing accuracy on the test set (X_test)parameters -- parameters learnt by the model. They can then be used to predict."""ops.reset_default_graph()# to be able to rerun the model without overwriting tf variablestf.set_random_seed(1)# to keep results consistent (tensorflow seed)seed =3# to keep results consistent (numpy seed)(m, n_H0, n_W0, n_C0)= X_train.shape n_y = Y_train.shape[1] costs =[]# To keep track of the cost# Create Placeholders of the correct shape### START CODE HERE ### (1 line)X, Y = create_placeholders(n_H0, n_W0, n_C0, n_y)### END CODE HERE #### Initialize parameters### START CODE HERE ### (1 line)parameters = initialize_parameters()### END CODE HERE #### Forward propagation: Build the forward propagation in the tensorflow graph### START CODE HERE ### (1 line)Z3 = forward_propagation(X, parameters)### END CODE HERE #### Cost function: Add cost function to tensorflow graph### START CODE HERE ### (1 line)cost = compute_cost(Z3, Y)### END CODE HERE #### Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer that minimizes the cost.### START CODE HERE ### (1 line)optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)### END CODE HERE #### Initialize all the variables globallyinit = tf.global_variables_initializer()# Start the session to compute the tensorflow graphwith tf.Session()as sess:# Run the initializationsess.run(init)# Do the training loopfor epoch inrange(num_epochs):minibatch_cost =0.num_minibatches = m // minibatch_size# number of minibatches of size minibatch_size in the train setseed = seed +1minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)for minibatch in minibatches:# Select a minibatch(minibatch_X, minibatch_Y)= minibatch# IMPORTANT: The line that runs the graph on a minibatch.# Run the session to execute the optimizer and the cost, the feedict should contain a minibatch for (X,Y).### START CODE HERE ### (1 line)_ , temp_cost = sess.run([optimizer, cost], feed_dict={X:minibatch_X, Y:minibatch_Y})### END CODE HERE ###minibatch_cost += temp_cost / num_minibatches# Print the cost every epochif print_cost ==Trueand epoch %5==0:print("Cost after epoch %i: %f"%(epoch, minibatch_cost))if print_cost ==Trueand epoch %1==0:costs.append(minibatch_cost)# plot the costplt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate ="+str(learning_rate))plt.show()# Calculate the correct predictionspredict_op = tf.argmax(Z3,1)correct_prediction = tf.equal(predict_op, tf.argmax(Y,1))# Calculate accuracy on the test setaccuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))print(accuracy)train_accuracy = accuracy.eval({X: X_train, Y: Y_train})test_accuracy = accuracy.eval({X: X_test, Y: Y_test})print("Train Accuracy:", train_accuracy)print("Test Accuracy:", test_accuracy)return train_accuracy, test_accuracy, parameters
Cost after epoch 0:1.943088
Cost after epoch 5:1.885871
Cost after epoch 10:1.824765
Cost after epoch 15:1.595936
Cost after epoch 20:1.243416
Cost after epoch 25:1.004351
Cost after epoch 30:0.875302
Cost after epoch 35:0.767196
Cost after epoch 40:0.711865
Cost after epoch 45:0.640964
Cost after epoch 50:0.574520
。。。。
Cost after epoch 150:0.207593
。。。。
Cost after epoch 300:0.071819
。。。。
Cost after epoch 500:0.013352
。。。。
Cost after epoch 595:0.016594
Tensor("Mean_1:0", shape=(), dtype=float32)
Train Accuracy:0.9916667
Test Accuracy:0.9