Python之精心整理的二十五个文本提取及NLP相关的处理案例
生活随笔
收集整理的這篇文章主要介紹了
Python之精心整理的二十五个文本提取及NLP相关的处理案例
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
一、提取 PDF 內容
# pip install PyPDF2 安裝 PyPDF2 import PyPDF2 from PyPDF2 import PdfFileReader# Creating a pdf file object. pdf = open("test.pdf", "rb")# Creating pdf reader object. pdf_reader = PyPDF2.PdfFileReader(pdf)# Checking total number of pages in a pdf file. print("Total number of Pages:", pdf_reader.numPages)# Creating a page object. page = pdf_reader.getPage(200)# Extract data from a specific page number. print(page.extractText())# Closing the object. pdf.close()二、提取 Word 內容
# pip install python-docx 安裝 python-docximport docxdef main():try:doc = docx.Document('test.docx') # Creating word reader object.data = ""fullText = []for para in doc.paragraphs:fullText.append(para.text)data = '\n'.join(fullText)print(data)except IOError:print('There was an error opening the file!')returnif __name__ == '__main__':main()三、提取 Web 網頁內容
# pip install bs4 安裝 bs4from urllib.request import Request, urlopen from bs4 import BeautifulSoupreq = Request('http://www.cmegroup.com/trading/products/#sortField=oi&sortAsc=false&venues=3&page=1&cleared=1&group=1',headers={'User-Agent': 'Mozilla/5.0'})webpage = urlopen(req).read()# Parsing soup = BeautifulSoup(webpage, 'html.parser')# Formating the parsed html file strhtm = soup.prettify()# Print first 500 lines print(strhtm[:500])# Extract meta tag value print(soup.title.string) print(soup.find('meta', attrs={'property':'og:description'}))# Extract anchor tag value for x in soup.find_all('a'):print(x.string)# Extract Paragraph tag value for x in soup.find_all('p'):print(x.text)四、讀取 Json 數據
import requests import jsonr = requests.get("https://support.oneskyapp.com/hc/en-us/article_attachments/202761727/example_2.json") res = r.json()# Extract specific node content. print(res['quiz']['sport'])# Dump data as string data = json.dumps(res) print(data)五、讀取 CSV 數據
import csvwith open('test.csv','r') as csv_file:reader =csv.reader(csv_file)next(reader) # Skip first rowfor row in reader:print(row)六、刪除字符串中的標點符號
import re import stringdata = "Stuning even for the non-gamer: This sound track was beautiful!\ It paints the senery in your mind so well I would recomend\ it even to people who hate vid. game music! I have played the game Chrono \ Cross but out of all of the games I have ever played it has the best music! \ It backs away from crude keyboarding and takes a fresher step with grate\ guitars and soulful orchestras.\ It would impress anyone who cares to listen!"# Methood 1 : Regex # Remove the special charaters from the read string. no_specials_string = re.sub('[!#?,.:";]', '', data) print(no_specials_string)# Methood 2 : translate() # Rake translator object translator = str.maketrans('', '', string.punctuation) data = data.translate(translator) print(data)七、使用 NLTK 刪除停用詞
from nltk.corpus import stopwordsdata = ['Stuning even for the non-gamer: This sound track was beautiful!\ It paints the senery in your mind so well I would recomend\ it even to people who hate vid. game music! I have played the game Chrono \ Cross but out of all of the games I have ever played it has the best music! \ It backs away from crude keyboarding and takes a fresher step with grate\ guitars and soulful orchestras.\ It would impress anyone who cares to listen!']# Remove stop words stopwords = set(stopwords.words('english'))output = [] for sentence in data:temp_list = []for word in sentence.split():if word.lower() not in stopwords:temp_list.append(word)output.append(' '.join(temp_list))print(output)八、使用 TextBlob 更正拼寫
from textblob import TextBlobdata = "Natural language is a cantral part of our day to day life, and it's so antresting to work on any problem related to langages."output = TextBlob(data).correct() print(output)九、使用 NLTK 和 TextBlob 的詞標記化
import nltk from textblob import TextBlobdata = "Natural language is a central part of our day to day life, and it's so interesting to work on any problem related to languages."nltk_output = nltk.word_tokenize(data) textblob_output = TextBlob(data).wordsprint(nltk_output) print(textblob_output)- 執行結果:
十、使用 NLTK 提取句子單詞或短語的詞干列表
from nltk.stem import PorterStemmerst = PorterStemmer() text = ['Where did he learn to dance like that?','His eyes were dancing with humor.','She shook her head and danced away','Alex was an excellent dancer.']output = [] for sentence in text:output.append(" ".join([st.stem(i) for i in sentence.split()]))for item in output:print(item)print("-" * 50) print(st.stem('jumping'), st.stem('jumps'), st.stem('jumped'))- 執行結果:
十一、使用 NLTK 進行句子或短語詞形還原
from nltk.stem import WordNetLemmatizerwnl = WordNetLemmatizer() text = ['She gripped the armrest as he passed two cars at a time.','Her car was in full view.','A number of cars carried out of state license plates.']output = [] for sentence in text:output.append(" ".join([wnl.lemmatize(i) for i in sentence.split()]))for item in output:print(item)print("*" * 10) print(wnl.lemmatize('jumps', 'n')) print(wnl.lemmatize('jumping', 'v')) print(wnl.lemmatize('jumped', 'v'))print("*" * 10) print(wnl.lemmatize('saddest', 'a')) print(wnl.lemmatize('happiest', 'a')) print(wnl.lemmatize('easiest', 'a'))- 執行結果:
十二、使用 NLTK 從文本文件中查找每個單詞的頻率
import nltk from nltk.corpus import webtext from nltk.probability import FreqDistnltk.download('webtext') wt_words = webtext.words('testing.txt') data_analysis = nltk.FreqDist(wt_words)# Let's take the specific words only if their frequency is greater than 3. filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3])for key in sorted(filter_words):print("%s: %s" % (key, filter_words[key]))data_analysis = nltk.FreqDist(filter_words)data_analysis.plot(25, cumulative=False)- 執行結果:
十三、從語料庫中創建詞云
import nltk from nltk.corpus import webtext from nltk.probability import FreqDist from wordcloud import WordCloud import matplotlib.pyplot as pltnltk.download('webtext') wt_words = webtext.words('testing.txt') # Sample data data_analysis = nltk.FreqDist(wt_words)filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3])wcloud = WordCloud().generate_from_frequencies(filter_words)# Plotting the wordcloud plt.imshow(wcloud, interpolation="bilinear")plt.axis("off") (-0.5, 399.5, 199.5, -0.5) plt.show()十四、NLTK 詞法散布圖
import nltk from nltk.corpus import webtext from nltk.probability import FreqDist from wordcloud import WordCloud import matplotlib.pyplot as pltwords = ['data', 'science', 'dataset']nltk.download('webtext') wt_words = webtext.words('testing.txt') # Sample datapoints = [(x, y) for x in range(len(wt_words))for y in range(len(words)) if wt_words[x] == words[y]]if points:x, y = zip(*points) else:x = y = ()plt.plot(x, y, "rx", scalex=.1) plt.yticks(range(len(words)), words, color="b") plt.ylim(-1, len(words)) plt.title("Lexical Dispersion Plot") plt.xlabel("Word Offset") plt.show()十五、使用 countvectorizer 將文本轉換為數字
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer# Sample data for analysis data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages." data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural." data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing."df1 = pd.DataFrame({'Java': [data1], 'Python': [data2], 'Go': [data2]})# Initialize vectorizer = CountVectorizer() doc_vec = vectorizer.fit_transform(df1.iloc[0])# Create dataFrame df2 = pd.DataFrame(doc_vec.toarray().transpose(),index=vectorizer.get_feature_names())# Change column headers df2.columns = df1.columns print(df2)- 執行結果:
十六、使用 TF-IDF 創建文檔術語矩陣
import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer# Sample data for analysis data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages." data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural." data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing."df1 = pd.DataFrame({'Java': [data1], 'Python': [data2], 'Go': [data2]})# Initialize vectorizer = TfidfVectorizer() doc_vec = vectorizer.fit_transform(df1.iloc[0])# Create dataFrame df2 = pd.DataFrame(doc_vec.toarray().transpose(),index=vectorizer.get_feature_names())# Change column headers df2.columns = df1.columns print(df2)- 執行結果:
十七、為給定句子生成 N-gram
- NLTK:
- TextBlob:
- 執行結果:
十八、使用帶有二元組的 sklearn CountVectorize 詞匯規范
import pandas as pd from sklearn.feature_extraction.text import CountVectorizer# Sample data for analysis data1 = "Machine language is a low-level programming language. It is easily understood by computers but difficult to read by people. This is why people use higher level programming languages. Programs written in high-level languages are also either compiled and/or interpreted into machine language so that computers can execute them." data2 = "Assembly language is a representation of machine language. In other words, each assembly language instruction translates to a machine language instruction. Though assembly language statements are readable, the statements are still low-level. A disadvantage of assembly language is that it is not portable, because each platform comes with a particular Assembly Language"df1 = pd.DataFrame({'Machine': [data1], 'Assembly': [data2]})# Initialize vectorizer = CountVectorizer(ngram_range=(2, 2)) doc_vec = vectorizer.fit_transform(df1.iloc[0])# Create dataFrame df2 = pd.DataFrame(doc_vec.toarray().transpose(),index=vectorizer.get_feature_names())# Change column headers df2.columns = df1.columns print(df2)- 執行結果:
十九、使用 TextBlob 提取名詞短語
from textblob import TextBlob#Extract noun blob = TextBlob("Canada is a country in the northern part of North America.")for nouns in blob.noun_phrases:print(nouns)- 執行結果:
二十、如何計算詞-詞共現矩陣
import numpy as np import nltk from nltk import bigrams import itertools import pandas as pddef generate_co_occurrence_matrix(corpus):vocab = set(corpus)vocab = list(vocab)vocab_index = {word: i for i, word in enumerate(vocab)}# Create bigrams from all words in corpusbi_grams = list(bigrams(corpus))# Frequency distribution of bigrams ((word1, word2), num_occurrences)bigram_freq = nltk.FreqDist(bi_grams).most_common(len(bi_grams))# Initialise co-occurrence matrix# co_occurrence_matrix[current][previous]co_occurrence_matrix = np.zeros((len(vocab), len(vocab)))# Loop through the bigrams taking the current and previous word,# and the number of occurrences of the bigram.for bigram in bigram_freq:current = bigram[0][1]previous = bigram[0][0]count = bigram[1]pos_current = vocab_index[current]pos_previous = vocab_index[previous]co_occurrence_matrix[pos_current][pos_previous] = countco_occurrence_matrix = np.matrix(co_occurrence_matrix)# return the matrix and the indexreturn co_occurrence_matrix, vocab_indextext_data = [['Where', 'Python', 'is', 'used'],['What', 'is', 'Python' 'used', 'in'],['Why', 'Python', 'is', 'best'],['What', 'companies', 'use', 'Python']]# Create one list using many lists data = list(itertools.chain.from_iterable(text_data)) matrix, vocab_index = generate_co_occurrence_matrix(data)data_matrix = pd.DataFrame(matrix, index=vocab_index,columns=vocab_index) print(data_matrix)- 執行結果:
二十一、使用 TextBlob 進行情感分析
from textblob import TextBlobdef sentiment(polarity):if blob.sentiment.polarity < 0:print("Negative")elif blob.sentiment.polarity > 0:print("Positive")else:print("Neutral")blob = TextBlob("The movie was excellent!") print(blob.sentiment) sentiment(blob.sentiment.polarity)blob = TextBlob("The movie was not bad.") print(blob.sentiment) sentiment(blob.sentiment.polarity)blob = TextBlob("The movie was ridiculous.") print(blob.sentiment) sentiment(blob.sentiment.polarity)- 執行結果:
二十二、使用 Goslate 進行語言翻譯
import goslatetext = "Comment vas-tu?"gs = goslate.Goslate()translatedText = gs.translate(text, 'en') print(translatedText)translatedText = gs.translate(text, 'zh') print(translatedText)translatedText = gs.translate(text, 'de') print(translatedText)二十三、使用 TextBlob 進行語言檢測和翻譯
from textblob import TextBlobblob = TextBlob("Comment vas-tu?")print(blob.detect_language())print(blob.translate(to='es')) print(blob.translate(to='en')) print(blob.translate(to='zh'))- 執行結果:
二十四、使用 TextBlob 獲取定義和同義詞
from textblob import TextBlob from textblob import Wordtext_word = Word('safe')print(text_word.definitions)synonyms = set() for synset in text_word.synsets:for lemma in synset.lemmas():synonyms.add(lemma.name())print(synonyms)- 執行結果:
二十五、使用 TextBlob 獲取反義詞列表
from textblob import TextBlob from textblob import Wordtext_word = Word('safe')antonyms = set() for synset in text_word.synsets:for lemma in synset.lemmas(): if lemma.antonyms():antonyms.add(lemma.antonyms()[0].name()) print(antonyms)- 執行結果:
總結
以上是生活随笔為你收集整理的Python之精心整理的二十五个文本提取及NLP相关的处理案例的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 【数据结构与算法】之深入解析“戳气球”的
- 下一篇: 【数据结构与算法】之深入解析“路径总和”