用python帮博士师兄解决流态化专业问题
生活随笔
收集整理的這篇文章主要介紹了
用python帮博士师兄解决流态化专业问题
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
今天博士師兄讓我幫忙實現一個畫圖的代碼,雖然研究背景比較專業,但是需求就是在某兩個大表中找到相同的數據并畫柱狀圖,下面就直接貼代碼了,主要用的就是numpy包,注釋也比較詳細:
#!/usr/bin/env pythonimport numpy as np import xlsxwriter# Step 1: Read data from flux plane raw particle files def caculate():# Change the file names to match your project settingsf1 = 'FLUX_upstream_raw_particle'f2 = 'FLUX_downstream_raw_particle'# Check column numbers, because they might be different for your project# Fluxplane## @ 1 "Time" "s"# @ 2 "Unique particle ID" ""tCol = 1pidCol = 2t1, pid1 = np.genfromtxt(f1, usecols=(tCol - 1, pidCol - 1), unpack=True)t2, pid2 = np.genfromtxt(f2, usecols=(tCol - 1, pidCol - 1), unpack=True)# Step 2: Calculate travel time between the two flux planes# 用numpy包創建一個array數組travelTimeArray = np.array([])# 將第一個文件里的第一列和第二列的每兩個元素組裝成一個元組 比如第一個文件的第一行是1,3;第二行是2,9# 現在的zip(t1, pid1)就變成了[(1,3),(2,9)]for myTime, myPID in zip(t1, pid1):# 判斷第一個表格的Id是否在第二個文件的id列里出現if np.isin(myPID, pid2):# 遍歷出第二個文件里面的第二列的id和第一個文件里的id相等的一個array數組,每一個# arrayIndex就是第二個文件里相應的pid的行數for arrayIndex in np.where(pid2 == myPID)[0]:# if t2[arrayIndex] > myTime:# 把得到的數據保存到之前創建的travelTimeArray數組中travelTimeArray = np.append(travelTimeArray, t2[arrayIndex] - myTime)# 跳出內層循環break# --------------------------保存到excel------------------------------------------#先定義一個workbook就是excel表格,參數填寫想要的名稱,每次執行前一定要保證沒有此文件workbook = xlsxwriter.Workbook('hello.xlsx') # 建立文件# 添加sheet的名字worksheet = workbook.add_worksheet("time")# 遍歷剛才保存的數組,遍歷上限是數組的長度,也就是結果的個數for i in range(len(travelTimeArray)):# 向excel中寫入數據,i+1的原因是excel里的第一行是1開始,但是range函數是從0開始worksheet.write('A' + str(i + 1), travelTimeArray[i]) # 向A1寫入# 執行完后關閉表格IO操作workbook.close()# Step 3: Print some general information about the calculated travel timesprint("========= General information about calculated travel times =========")print("Length of travelTimeArray =", len(travelTimeArray))print("Average travel time =", "{0:.4f}".format(np.mean(travelTimeArray)), "s")print("Standard dev. of travel time =", "{0:.4f}".format(np.std(travelTimeArray)), "s")print("Minimum travel time =", "{0:.4f}".format(np.amin(travelTimeArray)), "s")print("Maximum travel time =", "{0:.4f}".format(np.amax(travelTimeArray)), "s")# Step 4: Calculate a histogram of the travel times, to summarize the datahist, bin_edges = np.histogram(travelTimeArray)print()print("========= Histogram of calculated travel times =========")print("bin edges:", bin_edges)print("histogram:", hist)if __name__ == '__main__':caculate()總結
以上是生活随笔為你收集整理的用python帮博士师兄解决流态化专业问题的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 记录部署hue在k8s上
- 下一篇: Spring中BeanPostProce