IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
@article{wang2020improving,
title={Improving Adversarial Robustness Requires Revisiting Misclassified Examples},
author={Wang, Yisen and Zou, Difan and Yi, Jinfeng and Bailey, James and Ma, Xingjun and Gu, Quanquan},
year={2020}}
概
作者認為, 錯分樣本對于提高網絡的魯棒性是很重要的, 為此提出了一個啟發于此的新的損失函數.
主要內容
符號
\(h_{\theta}\): 參數為\(\theta\)的神經網絡;
\((x,y) \in \mathbb{R}^d \times \{1,\ldots, K\}\): 類別及其標簽;
h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right)=\underset{k=1, \ldots, K}{\arg \max } \mathbf{p}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right), \quad \mathbf{p}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)=\exp \left(\mathbf{z}_{k}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right) / \sum_{k^{\prime}=1}^{K} \exp \left(\mathbf{z}_{k^{\prime}}\left(\mathbf{x}_{i}, \boldsymbol{\theta}\right)\right)
\]
定義正分類樣本和誤分類樣本
\]
MART
在所有樣本上的魯棒分類誤差:
\mathcal{R}(h_{\theta}) = \frac{1}{n} \sum_{i=1}^n \max_{x_i' \in \mathcal{B}_{\epsilon}(x_i)} \mathbb{1}(h_{\theta}(x_i') \not= y_i),
\]
并定義在錯分樣本上的魯棒分類誤差
\mathcal{R}^- (h_{\theta}, x_i):= \mathbb{1} (h_{\theta}(\hat{x}_i') \not=y_i) + \mathbb{1}(h_{\theta}(x_i) \not= h_{\theta} (\hat{x}_i'))
\]
其中
\hat{x}_i'=\arg \max_{x_i' \in \mathcal{B}_{\epsilon} (x_i)} \mathbb{1} (h_{\theta} (x_i') \not = y_i).
\]
以及正分樣本上的魯棒分類誤差:
\mathcal{R}^+(h_{\theta}, x_i):=\mathbb{1}(h_{\theta}(\hat{x}_i') \not = y_i).
\]
最后, 我們要最小化的是二者的混合誤差:
\begin{aligned}
\min _{\boldsymbol{\theta}} \mathcal{R}_{\text {misc }}\left(h_{\boldsymbol{\theta}}\right): &=\frac{1}{n}\left(\sum_{i \in \mathcal{S}_{h}^{+}} \mathcal{R}^{+}\left(h_{\boldsymbol{\theta}}, \mathbf{x}_{i}\right)+\sum_{i \in \mathcal{S}_{\boldsymbol{h}_{\boldsymbol{\theta}}}^{-}} \mathcal{R}^{-}\left(h_{\boldsymbol{\theta}}, \mathbf{x}_{i}\right)\right) \\
&=\frac{1}{n} \sum_{i=1}^{n}\left\{\mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{i}^{\prime}\right) \neq y_{i}\right)+\mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \neq h_{\boldsymbol{\theta}}\left(\hat{\mathbf{x}}_{i}^{\prime}\right)\right) \cdot \mathbb{1}\left(h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}\right) \neq y_{i}\right)\right\}
\end{aligned}.
\]
為了能夠傳遞梯度, 需要利用一些替代函數"軟化"上面的損失函數, 對于\(\mathbb{1}(h_{\theta}(\hat{x}_i')\not = y_i)\)利用BCE損失函數替代
\mathrm{BCE} (p(\hat{x}_i, \theta),y_i)= -\log (p_{y_i} (\hat{x}_i',\theta))- \log (1-\max_{k\not=y_i} p_k(\hat{x}_i',\theta)),
\]
第一項為普通的交叉熵損失, 第二項用于提高分類邊界.
對于第二項\(\mathbb{1}(h_{\theta}(x_i)\not=h_{\theta}(\hat{x}_i'))\), 用KL散度作為替代
\mathrm{KL} (p(x_i, \theta)\| p(\hat{x}_i', \theta))=\sum_{k=1}^K p_k(x_i, \theta)\log \frac{p_k(x_i,\theta)}{p_k(\hat{x}_i',\theta)}.
\]
最后一項\(\mathbb{1}(h_{\theta}(x_i) \not =y_i)\)則可用 \(1-p_{y_i}(x_i,\theta)\)來代替.
于是最后的損失函數便是
\mathcal{L}^{\mathrm{MART}}(\theta)= \frac{1}{n} \sum_{i=1}^n \ell(x_i, y_i, \theta),
\]
其中
\]
總結
以上是生活随笔為你收集整理的IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: C语言入门思路
- 下一篇: 2021-05-21:给定一个数组arr