PHM相关资料
PHM是Prognostic and Health Management 的縮寫,即故障預測與健康管理。PHM廣泛應用于各個領域。是綜合利用現代信息技術、人工智能技術的最新研究成果而提出的一種全新的管理健康狀態的解決方案。PHM系統未來一段時間內系統失效可能性以及采取適當維護措施的能力,一般具備故障檢測與隔離、故障診斷、故障預測、健康管理和部件壽命追蹤等能力。
近年來隨著大數據和人工智能算法的興起,PHM中數據驅動方法以及人工智能在其中的應用越來越受關注。開辟此專欄是為了匯總人工智能算法(主要是傳統的機器學習算法和深度學習算法)在PHM中應用的相關學術資源,會不定期更新,持續跟蹤相關領域的最新研究成果。也歡迎大家在評論區推薦資源!
一、最新文章
點此進入文獻匯總頁
二、相關數據集
此部分轉載自:https://blog.csdn.net/hustcxl/article/details/89394428
1、CWRU(凱斯西儲大學軸承數據中心)
-
數據集下載:https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
-
CWRU數據集是使用最為廣泛的,文獻較多。不一一舉例。其中University of New South Wales 的Wade A. Smith在2015年進行了比較全面的總結和對比[1]。比較客觀的綜述和分析了使用數據進行診斷和分析研究的情況。官方網站提供的是.mat格式的數據,MATLAB直接使用比較方便。
-
Github上有人分享了在python中自動下載和使用的方法。https://github.com/Litchiware/cwru
-
R語言中使用的方法:https://github.com/coldfir3/bearing_fault_analysis
2、MFPT(機械故障預防技術學會)
-
數據下載:https://mfpt.org/fault-data-sets/
-
聲學和振動數據庫鏈接http://data-acoustics.com/measurements/bearing-faults/bearing-2/
-
使用該數據集的相比于CWRU少一些,2012年更新。一些對數據描述的論文[2]
-
MATLAB 文檔關于MFPT軸承數據的故障診斷舉例。https://ww2.mathworks.cn/help/predmaint/examples/Rolling-Element-Bearing-Fault-Diagnosis.html
3、德國Paderborn大學
-
數據下載:https://mb.uni-paderborn.de/kat/forschung/datacenter/bearing-datacenter/
-
相關說明及論文[3, 4]
4、FEMTO-ST軸承數據集
-
由FEMTO-ST研究所建立的PHM IEEE 2012數據挑戰期間使用的數據集[5-7]
-
FEMTO-ST網站:https://www.femto-st.fr/en
-
github鏈接:https://github.com/wkzs111/phm-ieee-2012-data-challenge-dataset
5、辛辛那提IMS
-
數據下載:https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/
-
相關論文[8, 9]
6、XJTU-SY Bearing Datasets(西安交通大學 軸承數據集)
-
由西安交通大學雷亞國課題組王彪博士整理。數據集下載:http://biaowang.tech/xjtu-sy-bearing-datasets/
-
使用數據集的論文[10]
7、東南大學
-
由東南大學嚴如強團隊博士生邵思雨完成[12]。數據下載:https://github.com/cathysiyu/Mechanical-datasets
-
相關文獻[11]
8、Acoustics and Vibration Database(振動與聲學數據庫)
- 提供一個手機振動故障數據集的公益性網站鏈接:http://data-acoustics.com/
參考文獻
[1] Smith W A, Randall R B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing, 2015,64-65:100-131.
[2] Lee D, Siu V, Cruz R, et al. Convolutional neural net and bearing fault analysis[C]//Proceedings of the International Conference on Data Mining (DMIN). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2016: 194.
[3] Bin Hasan M. Current based condition monitoring of electromechanical systems. Model-free drive system current monitoring: faults detection and diagnosis through statistical features extraction and support vector machines classification.[D]. University of Bradford, 2013.
[4] Lessmeier C, Kimotho J K, Zimmer D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification: Proceedings of the European conference of the prognostics and health management society, 2016[C].
[5] Porotsky S, Bluvband Z. Remaining useful life estimation for systems with non-trendability behaviour: Prognostics & Health Management, 2012[C].
[6] Nectoux P, Gouriveau R, Medjaher K, et al. PRONOSTIA: An experimental platform for bearings accelerated degradation tests.: IEEE International Conference on Prognostics and Health Management, PHM’12., 2012[C]. IEEE Catalog Number: CPF12PHM-CDR.
[7] E. S, H. O, A. S S V, et al. Estimation of remaining useful life of ball bearings using data driven methodologies: 2012 IEEE Conference on Prognostics and Health Management, 2012[C].2012
[8] Gousseau W, Antoni J, Girardin F, et al. Analysis of the Rolling Element Bearing data set of the Center for Intelligent Maintenance Systems of the University of Cincinnati: CM2016, 2016[C].
[9] Qiu H, Lee J, Lin J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration, 2006,289(4):1066-1090.
[10] B. W, Y. L, N. L, et al. A Hybrid Prognostics Approach for Estimating Remaining Useful Life of Rolling Element Bearings[J]. IEEE Transactions on Reliability, 2018:1-12.
[11] Siyu S , Stephen M A , Ruqiang Y , et al. Highly-Accurate Machine Fault Diagnosis Using Deep Transfer Learning[J]. IEEE Transactions on Industrial Informatics, 2018:1-1.
總結
- 上一篇: 图书馆区域集群管理系统软件V4.0
- 下一篇: 防窜货管理系统是什么?如何防止产品窜货?