pytorch MSELoss参数详解
生活随笔
收集整理的這篇文章主要介紹了
pytorch MSELoss参数详解
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
pytorch MSELoss參數詳解
import torch import numpy as np loss_fn = torch.nn.MSELoss(reduce=False, size_average=False) a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduce=False, size_average=True) a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) loss_fn = torch.nn.MSELoss(reduce=True, size_average=False) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) loss_fn = torch.nn.MSELoss(reduce=True, size_average=True) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) loss_fn = torch.nn.MSELoss()##reduce=True, size_average=True input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'none') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'sum') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'none') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)loss_fn = torch.nn.MSELoss(reduction = 'elementwise_mean') a=np.array([[1,2],[3,8]]) b=np.array([[5,4],[6,2]]) input = torch.autograd.Variable(torch.from_numpy(a)) target = torch.autograd.Variable(torch.from_numpy(b)) loss = loss_fn(input.float(), target.float()) print(loss)總結
以上是生活随笔為你收集整理的pytorch MSELoss参数详解的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Android 存储设备管理 -- St
- 下一篇: MEMS加速度计的概念