leetcode 95. Unique Binary Search Trees II | 96. Unique Binary Search Trees
生活随笔
收集整理的這篇文章主要介紹了
leetcode 95. Unique Binary Search Trees II | 96. Unique Binary Search Trees
小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.
95. Unique Binary Search Trees II
https://leetcode.com/problems/unique-binary-search-trees-ii/
題解
題是好題,可惜我自己想不出來,后來偷看了答案。
難點(diǎn)在于在何處進(jìn)行 list.add(root);,以及在修改樹的形狀時(shí)候,如何實(shí)現(xiàn)所謂的“深拷貝”,而不讓樹與樹之間相互影響。
/*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val = val; }* TreeNode(int val, TreeNode left, TreeNode right) {* this.val = val;* this.left = left;* this.right = right;* }* }*/ class Solution {public List<TreeNode> generateTrees(int n) {return genRange(1, n);}public List<TreeNode> genRange(int begin, int end) {List<TreeNode> list = new ArrayList<>();if (begin > end) {list.add(null);return list;}for (int i = begin; i <= end; i++) {List<TreeNode> leftRoots = genRange(begin, i - 1);List<TreeNode> rightRoots = genRange(i + 1, end);for (TreeNode left : leftRoots) {for (TreeNode right : rightRoots) {TreeNode root = new TreeNode(i);root.left = left;root.right = right;list.add(root);}}}return list;} }96. Unique Binary Search Trees
https://leetcode.com/problems/unique-binary-search-trees/
題解
本題雖然是 I,但比上題要多一個 dp,因?yàn)?n 的范圍比較大,而且只要返回最后的組合個數(shù)就行了,所以 dp map 中記錄 range 中的數(shù)字個數(shù)即可,不需要記錄 begin 和 end。
class Solution {Map<Integer, Integer> map;public int numTrees(int n) {map = new HashMap<>();return numRange(1, n);}public int numRange(int begin, int end) {if (begin > end) return 1;if (map.containsKey(end - begin + 1)) return map.get(end - begin + 1);int sum = 0;for (int i = begin; i <= end; i++) {int leftSum = numRange(begin, i - 1);int rightSum = numRange(i + 1, end);sum += (leftSum * rightSum);}map.put(end - begin + 1, sum);return sum;} }總結(jié)
以上是生活随笔為你收集整理的leetcode 95. Unique Binary Search Trees II | 96. Unique Binary Search Trees的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: leetcode 475. Heater
- 下一篇: leetcode 834. Sum of