leetcode 372. Super Pow | 372. 超级次方(快速幂)
生活随笔
收集整理的這篇文章主要介紹了
leetcode 372. Super Pow | 372. 超级次方(快速幂)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
題目
https://leetcode.com/problems/super-pow/
這道題的贊踩比例,讓人覺得是個大坑…
題解
快速冪,看了答案:C++ Clean and Short Solution
One knowledge: ab % k = (a%k)(b%k)%k
Since the power here is an array, we’d better handle it digit by digit.
One observation:
a^1234567 % k = (a^1234560 % k) * (a^7 % k) % k = (a^123456 % k)^10 % k * (a^7 % k) % kLooks complicated? Let me put it other way:
Suppose f(a, b) calculates a^b % k; Then translate above formula to using f :
f(a,1234567) = f(a, 1234560) * f(a, 7) % k = f(f(a, 123456),10) * f(a,7)%k;Implementation of this idea:
class Solution {int base = 1337;public int superPow(int a, int[] b) {return superPow(a, b, b.length - 1);}public int superPow(int a, int[] b, int i) {if (i == -1) return 1;int lastDigit = b[i];return powMod(superPow(a, b, --i), 10) * powMod(a, lastDigit) % base;}public int powMod(int a, int k) { // a^k%1337 (0<=k<=10)a %= base;int result = 1;for (int i = 0; i < k; i++) {result = (result * a) % base;}return result;} }總結
以上是生活随笔為你收集整理的leetcode 372. Super Pow | 372. 超级次方(快速幂)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: leetcode 371. Sum of
- 下一篇: leetcode 384. Shuffl