手撕python_Pytorch手撕经典网络之LeNet5
下圖為經典網絡LeNet5的網絡結構。
實現時,主要包括倆個卷積層,倆個pooling層,三個全連接層(嚴格來說,最后一層的Gaussian connection應有其它的轉化方式,這里用全連接)。
這里面采用了mnist數據集,但為了更深入的學習pytorch,所以這里采用了自定義數據源的方式。
下面一段代碼為加載mnist數據集,主要是解析二進制文件轉成numpy格式數據的過程。數據集是從mnist官方下載后的壓縮包,放置在工程代碼的data目錄下。
import gzip, struct
import numpy as np
def _read(image,label):
minist_dir = './data/'
with gzip.open(minist_dir+label) as flbl:
magic, num = struct.unpack(">II", flbl.read(8))
label = np.fromstring(flbl.read(), dtype=np.int8)
with gzip.open(minist_dir+image, 'rb') as fimg:
magic, num, rows, cols = struct.unpack(">IIII", fimg.read(16))
image = np.fromstring(fimg.read(), dtype=np.uint8).reshape(len(label), rows, cols)
return image,label
def get_data():
train_img,train_label = _read(
'train-images-idx3-ubyte.gz',
'train-labels-idx1-ubyte.gz')
test_img,test_label = _read(
't10k-images-idx3-ubyte.gz',
't10k-labels-idx1-ubyte.gz')
return [train_img,train_label,test_img,test_label]
為了方便看某些圖片,這里簡單實現了圖片打印的功能:
import matplotlib.pyplot as plt
%matplotlib inline
X, y, Xt, yt = get_data()
def imshow(img, label):
plt.imshow(img.reshape((28,28)))
plt.title(label)
imshow(X[0], y[0])
接下來是用pytorch實現LeNet的部分。這部分較為簡單,對pytorch有了解后,按照LeNet的結構,按照步驟實現即可,需要注意的是由于LeNet處理的默認輸入時32*32的圖片,這里加padding=2,即上下左右各padding 2個單位像素,擴充到32*32。
from torch import n
from torch.nn import functional as F
from torch.autograd import Variable
import torch
class LeNet5(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(1, 6, 5, padding=2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:]
num_features = 1
for s in size:
num_features *= s
return num_features
然后是訓練加預測的過程,本人喜歡邊訓練邊測試的過程,所以按照這樣的結構參照官方一些例子進行了實現。
這里custom_normalization是手工實現標準化的過程(貌似不用,效果也沒差太多)。最后的準確率在99%以上。
#使用pytorch封裝的dataloader進行訓練和預測
from torch.utils.data import TensorDataset, DataLoader
from torchvision import transforms
def custom_normalization(data, std, mean):
return (data - mean) / std
use_gpu = torch.cuda.is_available()
batch_size = 256
kwargs = {'num_workers': 2, 'pin_memory': True} if use_gpu else {}
X, y, Xt, yt = get_data()
#主要進行標準化處理
mean, std = X.mean(), X.std()
X = custom_normlization(X, mean, std)
Xt = custom_normlization(Xt, mean, std)
train_x, train_y = torch.from_numpy(X.reshape(-1, 1, 28, 28)).float(), torch.from_numpy(y.astype(int))
test_x, test_y = [
torch.from_numpy(Xt.reshape(-1, 1, 28, 28)).float(),
torch.from_numpy(yt.astype(int))
]
train_dataset = TensorDataset(data_tensor=train_x, target_tensor=train_y)
test_dataset = TensorDataset(data_tensor=test_x, target_tensor=test_y)
train_loader = DataLoader(dataset=train_dataset, shuffle=True, batch_size=batch_size, **kwargs)
test_loader = DataLoader(dataset=test_dataset, shuffle=True, batch_size=batch_size, **kwargs)
model = LeNet5()
if use_gpu:
model = model.cuda()
print('USE GPU')
else:
print('USE CPU')
criterion = nn.CrossEntropyLoss(size_average=False)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.99))
def weight_init(m):
# 使用isinstance來判斷m屬于什么類型
if isinstance(m, nn.Conv2d):
import math
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
# m中的weight,bias其實都是Variable,為了能學習參數以及后向傳播
m.weight.data.fill_(1)
m.bias.data.zero_()
model.apply(weight_init)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if use_gpu:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('Train Epoch:{}[{}/{}({:.0f}%)]\tLoss:{:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data[0]))
def test():
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if use_gpu:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += criterion(output, target).data[0] # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss:{:.4f}, Accuracy:{}/{}({:.2f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 501):
train(epoch)
test()
本文實現lenet與原paper還是有些不一樣,主要體現在評論區說的s2到c3的過程上。對于該問題,本文實現算是一個簡化版本。原paper之所以那樣實現,也是受限于當時的計算資源。現簡化版本也符合pytorch的實現框架。pytorch原生并沒有提供s2到c3的計算過程模塊,用戶可自行實現,詳細可借鑒tiny-dnn/tiny-dnn。
參考鏈接
總結
以上是生活随笔為你收集整理的手撕python_Pytorch手撕经典网络之LeNet5的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 内存颗粒:微小之中蕴含巨大能量
- 下一篇: 4790k超频内存频率:性能提升与散热挑