计算eer python
生活随笔
收集整理的這篇文章主要介紹了
计算eer python
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
target_scores = []
nontarget_scores = []
f = open('D:\dataset\ASV\\eval3.txt').readlines()
#將兩個數組讀出來
for line in f:splits = line.strip().split(' ')print(splits)if splits[1] == 'bonafide':target_scores.append(eval(splits[0]))else:nontarget_scores.append(eval(splits[0]))#排序,從小到大排序
target_scores = sorted(target_scores)
nontarget_scores = sorted(nontarget_scores)print (target_scores)target_size = len(target_scores)
target_position = 0
for target_position in range(target_size):nontarget_size = len(nontarget_scores)nontarget_n = nontarget_size * target_position * 1.0 / target_sizenontarget_position = int(nontarget_size - 1 - nontarget_n)if nontarget_position < 0:nontarget_position = 0if nontarget_scores[nontarget_position] < target_scores[target_position]:print ("nontarget_scores[nontarget_position] is", nontarget_position, nontarget_scores[nontarget_position])print ("target_scores[target_position] is", target_position, target_scores[target_position])breakthreshold = target_scores[target_position]
print ("threshold ", threshold)
eer = target_position * 1.0 / target_size
print ("eer ", eer)
?
?
eval3.txt 格式為:
總結
以上是生活随笔為你收集整理的计算eer python的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: .线性回归(Linear Regress
- 下一篇: (八)Springboot整合Redis