阿諾爾德的「常微分方程」中對「單參變換羣」的定義好像有問題
生活随笔
收集整理的這篇文章主要介紹了
阿諾爾德的「常微分方程」中對「單參變換羣」的定義好像有問題
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
見阿諾爾德的「常微分方程」第四頁,他對「單參變換羣」的定義如下:
?
可是這裏有一個問題,就是,如果$M$是實數集,那麼根據我的博文?M的冪集的勢不大於_M_的所有排列形成的集合的勢?,可知 M 到它自身的映射族$\{g^t\}$的勢比$\mathbf{R}$的勢要大,也就是說,想要用實數集裏的元素來標記$M$的單參變換羣是不可能的.這算不算書上的定義有問題?
?
回答:原來是我錯了.單參變換羣不一定包括$M$到自身的所有雙射的.正是因爲$M$到自身的所有雙射沒有被單參變換羣用光,$M$作爲相空間才有更多的空白潛能.
轉載于:https://www.cnblogs.com/yeluqing/archive/2012/11/16/3828131.html
總結
以上是生活随笔為你收集整理的阿諾爾德的「常微分方程」中對「單參變換羣」的定義好像有問題的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 如何结合SharePoint Desig
- 下一篇: 狼奔权限管理系统[开源]