3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 人工智能 > ChatGpt >内容正文

ChatGpt

Open AI 自监督学习笔记:Self-Supervised Learning | Tutorial | NeurIPS 2021

發(fā)布時(shí)間:2024/1/8 ChatGpt 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Open AI 自监督学习笔记:Self-Supervised Learning | Tutorial | NeurIPS 2021 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

轉(zhuǎn)載自微信公眾號(hào)
原文鏈接: https://mp.weixin.qq.com/s?__biz=Mzg4MjgxMjgyMg==&mid=2247486049&idx=1&sn=1d98375dcbb9d0d68e8733f2dd0a2d40&chksm=cf51b898f826318ead24e414144235cfd516af4abb71190aeca42b1082bd606df6973eb963f0#rd

Open AI 自監(jiān)督學(xué)習(xí)筆記


文章目錄

    • Open AI 自監(jiān)督學(xué)習(xí)筆記
      • Outline
      • Introduction
        • What is self-supervised learning?
        • What's Possible with Self-Supervised Learning?
      • Early Work
        • Early Work: Connecting the Dots
        • Restricted Boltzmann Machines
        • Autoencoder: Self-Supervised Learning for Vision in Early Days
        • Word2Vec: Self-Supervised Learning for Language
        • Autoregressive Modeling
        • Siamese Networks
        • Multiple Instance Learning & Metric Learning
      • Methods
        • Methods for Framing Self-Supervised Learning Tasks
        • Self-Prediction
        • Self-prediction: Autoregressive Generation
        • Self-Prediction: Masked Generation
        • Self-Prediction: Innate Relationship Prediction
        • Self-Prediction: Hybrid Self-Prediction Models
        • Contrastive Learning
        • Contrastive Learning: Inter-Sample Classification
          • Loss function 1: Contrastive loss
          • Loss function 2: Triplet loss
          • Loss function 3: N-pair loss
          • Loss function 4: Lifted structured loss
          • Loss function 5: Noise Contrastive Estimation (NCE)
          • Loss function 6: InfoNCE
          • Loss function 7: Soft-Nearest Neighbors Loss
        • Contrastive Learning: Feature Clustering
        • Contrastive Learning: Multiview Coding
        • Contrastive Learning between Modalities
      • Pretext tasks
        • Recap: Pretext Tasks
        • Pretext Tasks: Taxonomy
        • Image / Vision Pretext Tasks
          • Image Pretext Tasks: Varizational AutoEncoders
          • Image Pretext Tasks: Generative Adversial Networks
          • Vision Pretext Tasks: Autoregressive Image Generation
          • Vision Pretext Tasks: Diffusion Model
          • Vision Pretext Tasks: Masked Prediction
          • Vision Pretext Tasks: Colorization and More
          • Vision Pretext Tasks: Innate Relationship Prediction
          • Contrastive Predictive Coding and InfoNCE
          • Vision Pretext Tasks: Inter-Sample Classification
          • Vision Pretext Tasks: Contrastive Learning
          • Vision Pretext Tasks: Data Augmentation and Multiple Views
          • Vision Pretext Tasks: Inter-Sample Classification
            • MoCo
            • SimCLR
            • Barlow Twins
          • Vision Pretext Tasks: Non-Contrastive Siamese Networks
          • Vision Pretext Tasks: Feature Clustering with K-Means
          • Vision Pretext Tasks: Feature Clustering with Sinkhorm-Knopp
          • Vision Pretext Tasks: Feature Clustering to improve SSL
          • Vision Pretext Tasks: Nearest-Neighbor
          • Vision Pretext Tasks: Combining with Supervised Loss
        • Video Pretext Tasks
          • Video Pretext Tasks: Innate Relationship Prediction
          • Video Pretext Tasks: Optical Flow
          • Video Pretext Tasks: Sequence Ordering
          • Video Pretext Tasks: COlorization
          • Video Pretext Tasks: Contrastive Multi-View Learning
          • Video Pretext Task: Autoregressive Generation
        • Audio Pretext Tasks
          • Audio Pretext Tasks: Contrastive Learning
          • Audio Pretext Task: Masked Languagee Modeling for ASR
        • Multimodal Pretext Tasks
        • Language Pretext Tasks
          • Language Pretext Tasks: Generative Language Modeling
          • Language Pretext Tasks: Sentence Embedding
      • Training Techniques
        • Techniques: Data augmentation
          • Techniques: Data augmentation -- Image Augmentation
          • Techniques: Data augmentation -- Text Augmentation
        • Hard Negative Mining
          • What is "hard negative mining"
          • Explicit hard negative mining
          • Implicit hard negative mining
      • Theories
        • Contrastive learning captures shared information betweem views
        • The InfoMin Principle
        • Alignment and Uniformity on the Hypersphere
        • Dimensional Collapse
        • Provable Guarantees for Contrastive Learning
      • Feature directions
        • Future Directions


Video: https://www.youtube.com/watch?v=7l6fttRJzeU
Slides: https://nips.cc/media/neurips-2021/Slides/21895.pdf

Self-Supervised Learning
Self-Prediction and Contrastive Learning

  • Self-Supervised Learning
    • a popular paradigm of representation learning

Outline

  • Introduction: motivation, basic concepts, examples
  • Early Work: Look into connection with old methods
  • Methods
    • Self-prediction
    • Contrastive Learning
    • (for each subsection, present the framework and categorization)
  • Pretext tasks: a wide range of literature review
  • Techniques: improve training efficiency

Introduction

What is self-supervised learning and why we need it?

What is self-supervised learning?

  • Self-supervised learning (SSL):
    • a special type of representation learning that enables learning good data representation from unlablled dataset
  • Motivation :
    • the idea of constructing supervised learning tasks out of unsupervised datasets

    • Why?

      ? Data labeling is expensive and thus high-quality dataset is limited

      ? Learning good representation makes it easier to transfer useful information to a variety of downstream tasks ? \Rightarrow ? e.g. Few-shot learning / Zero-shot transfer to new tasks

Self-supervised learning tasks are also known as pretext tasks

What’s Possible with Self-Supervised Learning?

  • Video Colorization (Vondrick et al 2018)

    • a self-supervised learning method

    • resulting in a rich representation

    • can be used for video segmentation + unlabelled visual region tracking, without extra fine-tuning

    • just label the first frame

  • Zero-shot CLIP (Radford et al. 2021)

    • Despite of not training on supervised labels

    • Zero-shot CLIP classifier achieve great performance on challenging image-to-text classification tasks

Early Work

Precursors 先驅(qū)者 to recent self-supervised approaches

Early Work: Connecting the Dots

Some ideas:

  • Restricted Boltzmann Machines

  • Autoencoders

  • Word2Vec

  • Autogressive Modeling

  • Siamese networks

  • Multiple Instance / Metric Learning

Restricted Boltzmann Machines

  • RBM:
    • a special case of markov random field

    • consisting of visible units and hidden units

    • has connections between any pair across visible and hidden units, but not within each group

Autoencoder: Self-Supervised Learning for Vision in Early Days

  • Autoencoder: a precursor to the modren self-supervised approaches
    • Such as Denoising Autoencoder
  • Has inspired many self-learning approaches in later years
    • such as masked language model (e.g. BERT), MAE

Word2Vec: Self-Supervised Learning for Language

  • Word Embeddings to map words to vectors
    • extract the feature of words
  • idea:
    • the sum of neighboring word embedding is predictive of the word in the middle

  • An interesting phenomenon resulting from word2Vec:
    • you can observe linear substructures in the embedding space where the lines connecting comparable concepts such as the corresponding masculine and feminine words appear in roughly parallel lines

Autoregressive Modeling

  • Autoregressive model:

    • Autoregressive (AR) models are a class of time series models in which the value at a given time step is modeled as a linear function of previous values

    • NADE: Neural Autogressive Distribution Estimator

  • Autogressive model also has been a basis for many self-supervised methods such as gpt

Siamese Networks

Many contrastive self-supervised learning methods use a pair of neural networks and learned from their difference
– this idea can be tracked back to Siamese Networks

  • Self-organizing neural networks
    • where two neural networks take seperate but related parts of the input, and learns to maximize the agreement between the two outputs
  • Siamese Networks
    • if you believe that one network F can well encode x and get a good representation f(x)

    • then, 對(duì)于兩個(gè)不同的輸入x1和x2,their distance can be d(x1,x2) = L(f(x1),f(x2))

    • the idea of running two identical CNN on two different inputs and then comparing them —— a Siamese network

    • Train by:

      ? If xi and xj are the same person, ∣ ∣ f ( x i ) ? f ( x j ) ||f(xi)-f(xj) ∣∣f(xi)?f(xj) is small

      ? If xi and xj are the different person, ∣ ∣ f ( x i ) ? f ( x j ) ||f(xi)-f(xj) ∣∣f(xi)?f(xj) is large

Multiple Instance Learning & Metric Learning

Predecessors of the predetestors of the recent contrastive learning techniques : multiple instance learning and metric learning

  • deviate frome the typical framework of empirical risk minimization

    • define the objective function in terms of multiple samples from the dataset ? \Rightarrow ? multiple instance learning
  • ealy work:

    • around non-linear dimensionality reduction
    • 如multi-dimensional scaling and locally linear embedding
    • better than PCA: can preserving the local structure of data samples
  • metric learning:

    • x and y: two samples
    • A: A learnable positive semi-definite matrix
  • contrastive Loss:

    • use a spring system to decrease the distance between the same types of inputs, and increase between different type of inputs
  • Triplet loss

    • another way to obtain a learned metric
    • defined using 3 data points
    • anchor, positive and negative
    • the anchor point is learned to become similar to the positive, and dissimilar to the negative
  • N-pair loss:

    • generalized triplet loss
    • recent 對(duì)比學(xué)習(xí) 就以 N-pair loss 為原型

Methods

  • self-prediction
  • Contrastive learning

Methods for Framing Self-Supervised Learning Tasks

  • Self-prediction: Given an individual data sample, the task is to predict one part of the sample given the other part
    • 即 “Intra-sample” prediction

The part to be predicted pretends to be missing

  • Contrastive learning: Given multiple data samples, the task is to predict the relationship among them
    • relationship: can be based on inner logics within data

      ? such as different camera views of the same scene

      ? or create multiple augmented version of the same sample

The multiple samples can be selected from the dataset based on some known logics (e.g., the order of words / sentences), or fabricated by altering the original version
即 we know the true relationship between samples but pretend to not know it

Self-Prediction

  • Self-prediction construct prediction tasks within every individual data sample

    • to predict a part of the data from the rest while pretending we don’t know that part

    • The following figure: demonstrate how flexible and diverse the options we have for constructing self-prediction learning tasks

      ? can mask any dimensions

  • 分類:

    • Autoregressive generation
    • Masked generation
    • Innate relationship prediction
    • Hybrid self-prediction

Self-prediction: Autoregressive Generation

  • The autoregressive model predicts future behavior based on past behavior

    • Any data that comes with an innate sequential order can be modeled with regression
  • Examples :

    • Audio (WaveNet, WaveRNN)
    • Autoregressive language modeling (GPT, XLNet)
    • Images in raster scan (PixelCNN, PixelRNN, iGPT)

Self-Prediction: Masked Generation

  • mask a random portion of information and pretend it is missiing, irrespective of the natural sequence

    • The model learns to predict the missing portion given other unmasked information
  • e.g.,

    • predicting random words based on other words in the same context around it
  • Examples :

    • Masked language modeling (BERT)
    • Images with masked patch (denoising autoencoder, context autoencoder, colorization)

Self-Prediction: Innate Relationship Prediction

  • Some transformation (e.g., segmentation, rotation) of one data samples should maintain the original information of follow the desired innate logic

  • Examples

    • Order of image patches

      ? e.g., shuffle the patches

      ? e.g., relative position, jigsaw puzzle

    • Image rotation

    • Counting features across patches

Self-Prediction: Hybrid Self-Prediction Models

Hybrid Self-Prediction Models: Combines different type of generation modeling

  • VQ-VAE + AR
    • Jukebox (Dhariwal et al. 2020), DALL-E (Ramesh et al. 2021)
  • VQ-VAE + AR + Adversial
    • VQGAN (Esser & Rombach et al. 2021)

    • VQ-VAE: to learn a discrete code book of context rich visual parts

    • A transformer model: trained to auto-aggressively modeling the color combination of this code book

Contrastive Learning

  • Goal:

    • To learn such an embedding space in which similar sample pairs stay close to each other while dissimilar ones are far apart

  • 對(duì)比學(xué)習(xí) can be applied to both supervised and unsupervised settings

    • when working with unsupervised data, 對(duì)比學(xué)習(xí) is one of the most powerful approach in the self-supervised learning
  • Category

    • Inter-sample classification

      🚩 the most dominant approach

      ? “inter-smaple”: emphasize or distinguish it from “intra-sample”

    • Feature clustering

    • Multiview coding

Contrastive Learning: Inter-Sample Classification

  • Given both similar (“positive”) and dissimilar (“negative”) candidates, to identify which ones are similar to the anchor data point is a classification task

    • anchor: the original input
  • How to construct a set of data point candidates:

    • The original input and its distorted version
    • Data that captures the same target from different views
  • Common loss functions :

    • Contrastive loss, 2005
    • Triplet loss, 2015
    • Lifted structured loss, 2015
    • Multi-class n-pair loss, 2016
    • Noise contrastive estimation, 2010
    • InfoNCE, 2018
    • Soft-nearest neighbors loss, 2007, 2019
Loss function 1: Contrastive loss
  • 2005

  • Works with labelled dataset

  • Encoder data into an embedding vector

    • such that examples from the same class have similar embeddings and samples from different classes have different ones
  • Given two labeled data pairs ( x i , y i ) (x_i,y_i) (xi?,yi?) and ( x j , y j ) (x_j,y_j) (xj?,yj?):

Loss function 2: Triplet loss
  • Triplet loss (Schroff et al. 2015)

    • learns to minimize the distance between the anchor x x x and positive x + x+ x+ and
    • maximize the distance between the anchor x x x and negative x ? x- x? at the same time
  • Given a triplet input ( x , x + , x ? ) (x, x^{+}, x^{-}) (x,x+,x?)

Triplet (三胞胎) loss: because it demands an input triplet containing one anchor, one positive and one negative

Loss function 3: N-pair loss
  • N-Pair loss (Sohn 2016)
    • generalizes triplet loss to include comparison with multiple negative samples
  • Given oen positive and N-1 negative samples:
    • { x , x + , x 1 ? , . . . , x N ? 1 ? } \{x,x^{+},x_{1}^{-},...,x_{N-1}^{-}\} {x,x+,x1??,...,xN?1??}

Loss function 4: Lifted structured loss
  • Lifted structured loss (Song et al. 2015):

    • utilizes all the pairwise edges within one training batch for better computational efficiency

  • 對(duì)于大規(guī)模訓(xùn)練,batchsize經(jīng)常非常大

    • means we have many samples within one batch
    • can construct multiple similar or dissimilar pairs
    • Lifted structured loss: utilize all the paragraphs edges of relationship within one training batch
    • improve compute efficiency as it incorporates more information within one batch
Loss function 5: Noise Contrastive Estimation (NCE)
  • Noise contrastive Estimation (NCE): Gutmann & Hyvarinen 2010

    • runs logistic regression to tell apart the target data from noise
  • Given target sample distribution p and noise distribution q:

  • initially proposed to learn word embedding in 2010

Loss function 6: InfoNCE
  • InfoNCE (2018)

    • Uses categorical cross-entropy loss to identify the positive sample amongst a set of unrelated noise samples
  • Given a context vector c, the positive sample should be drawn from the conditional distribution ( p ( x ∣ c ) ) (p(x|c)) (p(xc))

    • while N-1 negative samples are drawn from the proposal distribution p(x), independent from the context c
  • The probability of detecting the positive sample correctly is:

Loss function 7: Soft-Nearest Neighbors Loss
  • Soft-Nearest Neighbors Loss (Frosst et al. 2019): extends the loss function to include multiple positive samples given known labels
  • Given a batch of samples { x i , y i } ∣ i = 1 B \{x_i,y_i\}|_{i=1}^B {xi?,yi?}i=1B?
    • known labels may come from supervised dataset or fabricated with data augmentation

    • temperature term: tuning how concentrated the feature space

Contrastive Learning: Feature Clustering

  • Find similar data samples by clustering them with learned features

  • core idea : Use clustering algorithms to assign pseudo lables to samples such that we can run intra-sample contrastive learning

  • Examples:

    • Deep Cluster (Caron et al 2018)

    • Inter CLR (Xie et al 2021)

Contrastive Learning: Multiview Coding

  • Apply the InfoNCE objective to two or more different views of input data

  • Became a mainstream contrastive learning method

    • AMDIM (Bachman et al 2019)
    • Contrastive multiview coding (CMC, Tian et al 2019) 等

Contrastive Learning between Modalities

  • Views can be from paired inputs from two or more modalities
    • CLIP (Radford et al 2021)、ALIGN (Jia et al 2021):enables zero-shot classification, cross-modal retrieval, guided image generation

    • CodeSearchNet (Husain et al 2019): contrast learning between text and code

Pretext tasks

Recap: Pretext Tasks

  • Step 1: Pre-train a model for a pretext task

  • Step 2: Transfer to applications

Pretext Tasks: Taxonomy

  • Generative
    • VAE
    • GAN
    • Autoregressive
    • Flow-based
    • Diffusion
  • Self-Prediction
    • Masked Prediction (Denoising AE, Context AE)
    • Channel Shuffling (colorization, split-brain)
  • Innate Relationship
    • Patch Positioning
    • Image Rotation
    • Feature Counting
    • Contrastive Predictive Coding
  • Contrastive
    • Instance Discrim

    • Augmented Views

    • Clustering-based

Image / Vision Pretext Tasks

Image Pretext Tasks: Varizational AutoEncoders
  • Auto-Encoding Variational Bayes (Kingma et al. 2014)

  • Image generation:

    • itself is an immensely broad field that deserves an entire tutorial or more
    • but can also serve as representation learning
Image Pretext Tasks: Generative Adversial Networks
  • Jointly train an encoder, additional to the usual GAN

    • Bidirectional GAN

    • Adversarially Learned Inference

  • GAN Inversion: learning encoder post-hoc and/or optimizing for given image

Vision Pretext Tasks: Autoregressive Image Generation
  • Neural autoregressive density estimation (NADE)
  • Pixel RNN, Pixel CNN
    • Use RNN and CNN to predict values conditioned on the neighboring pixels
  • Image GPT
    • Uses a transformer on discretized pixels and was able to obtain better representation than building of supervised approaches

Vision Pretext Tasks: Diffusion Model
  • Diffusion Modeling :
    • Follows a Markov chain of diffusion steps to slowly add random noise to data

    • and then learn to reverse the diffusion process to construct desired data samples from the noise

Vision Pretext Tasks: Masked Prediction
  • Denoising autoencoder (Vincent et al. 2008)

    • Add noise = Randomly mask some pixels

    • Only reconstruction loss

  • Context autoencoder (Pathak et al 2016)

    • Mask a random region in the image

    • Reconstruction loss + adversial loss

    • adversial loss: tries to make it difficult to distingusih between the painting produced by the model and the actual image

Vision Pretext Tasks: Colorization and More

can not only be on the pixel value itself, but also on any subset of information from the image

  • Image Colorization

    • Predict the binned CIE Lab color space given a grayscale image
  • Split-brain autoencoder

    • Predict a subset of color channels from the rest of channels
    • Channels: luminosit, color, depth, etc.

In order to get representation that transfer well to downstream tasks

Vision Pretext Tasks: Innate Relationship Prediction
  • Learn the relationship among image patches:
    • Predict relative positions between patches
    • Jigsaw Puzzle using patches

  • RotNet: predict which rotation is applied (Gidaris et al. 2018)
    • Rotation does not alter the semantic content of an image
  • Representation Learning by Learning to Count (Noroozi et al. 2017)
    • Counting features across patches without labels, using equivariance of counts
    • ie, learns a function that counts visual primitives in images

Contrastive Predictive Coding and InfoNCE
  • Contrastive Predictive Coding (CPC) (van den Oord et al 2018)
    • Classify the “future” representation amongst a set of unrelated “negative” samples
    • an autoregressive context predictor is used to classify the correct future patches

  • minimizing the loss function 等價(jià)于 maxmizing a lower bound to the mutual information between the predicted context c t c_t ct? and the future patch x t + k x_{t+k} xt+k?
    • 相當(dāng)于預(yù)測(cè)的數(shù)據(jù)的latent representation最準(zhǔn)確

CPC has been highly influential in contrastive learning

  • showing the effectiveness of causing the problem as an entire sample classification task
Vision Pretext Tasks: Inter-Sample Classification
  • Example CNN
  • Instance-level discrimination
    • Each istance is a distinct calss of its own

      🚩 # classes = # training samples

    • Non-parametric softmax that compares features

    • Memory bank for stroing representations of past samples V = V { i } V=V\{i\} V=V{i}

The model learns to scatter the feature vectors in the hypersphere while mapping visually similar images into closer regions

Vision Pretext Tasks: Contrastive Learning
  • Common approach:
    • Positive: make multiple views to one images and consider the image and its distorted version as similar pairs
    • Negative: different images are treated dissimilar

一個(gè)自然的問題:Is there better ways to creat multiview images? ↓ \downarrow

Vision Pretext Tasks: Data Augmentation and Multiple Views
  • Augment Multiscale Deep InfoMax
    • AMDIM, Bachman 2019
    • Views from different augmentations
    • create multiple views from one input image
  • Contrastive Multiview Coding
    • CMC
    • Multiple views from different channels or semantic segmentation labels of the image as different views from a single image
  • Pretext-Invariant Representation Learning
    • Jigsam transformation
    • (as an input transform)
Vision Pretext Tasks: Inter-Sample Classification
MoCo
  • MoCo (Momentum Contrast; He et al. 2019)

    • Memory bank is a FIFO queue now
    • The target features are encoded using a momentum encoder ? \Rightarrow ? 一個(gè)batch付出很小的代價(jià)即可獲得更多的negative samples
    • shuffling BN: 緩解BN對(duì)self-supervised learning的不利影響
      - MOCO v2:
    • MLP projection head
    • stronger data augmentation (添加了模糊)
    • Cosine learning rate schedule

  • MoCo v3:

    • Use Vision Transformer to replace ResNet
    • in-batch negatives

SimCLR
  • SimCLR (Simple framework for Contrastive Learning of visual Representation)
    • Contrastive learning loss

    • f() – base encoder

    • g() – projection head layer

    • In-batch negative samples

      ? Use large batches to have sufficient number of negative inputs

fully symmetric;

  • SimCLR v2
    • Larger ResNet models
    • Deeper g()
    • Memory bank

Barlow Twins
  • Barlow Twins (Zbontar et al. 2021)

    • Learn to make the cross-correlation matrix between two output features for two distorted version of the same sample close to the identity
    • Make it as diagonal as possible
    • because: if the individual features are efficiently encoded, they shouldn’t be encoding information that is redundant between any pairs ? \Rightarrow ? their corrleation should be zero

Vision Pretext Tasks: Non-Contrastive Siamese Networks

Learn similarity representations for different augmented views of the same sample, but no contrastive component involving negative samples

  • the objective is just minimizing the L2 distance between features encoded from the same image

  • Bootstrap Your Own Latent (BYOL, et al. )

    • Momentum-encoded features as the target
  • Simsiam (Chen 2020)

    • No momentum encoder
    • Large batch size unnecessary
  • BatchNorm seems to be playing an important role

    • might implicityly providing contrastive learning signal

Vision Pretext Tasks: Feature Clustering with K-Means

another major technology for self-supervised learning:

  • to learn from clusters of features
  • DeepCluster (Caron et al. 2018)
    • Iteratively clusters features via k-means
    • then, uses cluster assignments as pseudo lables to provide supervised signals
  • Online DeepCluster (Zhan et al. 2020)
    • Performs clustering and netwrok update simultaneously rather than alternatingly

  • Prototypical Cluster Learning (PCL, Li et al. 2020)
    • Online EM for clustering
    • combined with InfoNCE for smoothness
Vision Pretext Tasks: Feature Clustering with Sinkhorm-Knopp

Sinkhorm-Knopp: a cluster algorithm based on OT

  • SeLa (Self-Labelling, Asano et al. 2020)
  • SwAV (Swapping Assignments between multiple Views; Caron et al. 2020)
    • Implicit clustering via a learned prototype code (“anchor clusters”)
    • Predict cluster assignment in the other column

Vision Pretext Tasks: Feature Clustering to improve SSL

In this approach, nobel ideas based on clustering are designed to be used in conjunction with other SSL methods

  • InterCLR (Xie et al. 2020)
    • Inter-sample contrastive pairs are constructed according to pseudo labels obtained by clustering
    • 即讓對(duì)比學(xué)習(xí)的正樣本也可以來自不同的圖片 (而不是只能通過Multi-view) using pseudolabels from an online k-means clustering
  • Divide and Contraset (Tian et al. 2021)
    • Train expert models on the clustered datasets and then distill the experts into a single model

    • to improve the performance of other self-supervised learning models

Vision Pretext Tasks: Nearest-Neighbor
  • NNCLR (Dwibedi et al. 2021)
    • Contrast with the nearest neighbors in the embedding space

      ? to serve as the positive and negtive in contrastive learning

    • Allows for lighter data augmentation for views

Vision Pretext Tasks: Combining with Supervised Loss
  • Combine supervised loss + self-supervised learning
    • Self-supervised semi-supervised learning (S4L, Zhai et al 2019)
    • Unsupervised data augmentation (UDA, Xie et al 2019)
  • Use known labels for contrastive learning
    • Supervised Contrastive Loss (SupCon; Khosla et al. 2021)

      ? less sensitive to hyperparameter choices

Video Pretext Tasks

Video Pretext Tasks: Innate Relationship Prediction
  • Most image pretext tasks can be applied to videos
  • However, with an additional time dimension, much more information about the video shot configuration or the physical world can be extracted from videos
    • Predicting object movements
    • 3D motion of camera
Video Pretext Tasks: Optical Flow

Tracking object movement tracking in time

  • Tracking movement of image patches (Wang & Gupta, 2016)

  • Segmentation based on motion (Pathak et al. 2017)
Video Pretext Tasks: Sequence Ordering
  • Temporal order Verification

    • Misra et al. 2016

    • Fernando et al. 2017

    • 判斷順序是否正確

  • Predict the arrow of time, forward or backward

    • Wei et al. 2018
    • classify whether the sequene is moving forward or backward in time
    • outperform the temporal order verification model
Video Pretext Tasks: COlorization
  • Tracking emerges by colorizing videos (Vondrick et al. 2018)

    • Copy colors from a reference frame to another target frame in grayscale

    • by leverage the natural temporal coherence of colors across video frames

  • Tracking emerges by colorizing videos (Vondrick et al. 2018)

    • Used for video segmentation or human pose estimation without fine-tuning

      ? because the model can move the colored markings in the labeled input image directly in the prediction

Video Pretext Tasks: Contrastive Multi-View Learning
  • TCN (Sermanet et al. 2017)

    • Use triplet loss

    • Different viewpoints at the same timestep of the same scene should share the same embedding, while embedding should vary in time, even of the same camera viewpoint

  • Multi-frame TCN (Dwibedi et al. 2019)

    • Use n-pairs loss
    • Multiple frames are aggregated into the embedding
Video Pretext Task: Autoregressive Generation

Because video files are huge, generating coherent continuous of video has been a difficult task

  • Predicting videos with VQ-VAE (Walker et al. 2021)

    • first: learning to discretized the video into latent codes using VQ-VAE

    • then: learning to auto regressively generate the frames using pixel cnn or transformers

    • Combining VQ-VAE and autogressively models to generate high dimensional data ? \Rightarrow ? is a very powerful generating model

  • VideoGPT: Video generation using VQ-VAE and Transformers (Yan et al. 2021)

  • Jukebox (Dhariwal et al. 2020)

    • learning 3 different level of VQ-VAE using 3 different compression ratio
    • resulting 3 sequence of discrete code
    • then use them to generate new music

  • CALM (Castellon et al. 2021)
    • Jukebox representation for MIR tasks
  • TagBox (Manilow et al. 2021)
    • Source separation by steering Jukebox’ latent space

Audio Pretext Tasks

Audio Pretext Tasks: Contrastive Learning
  • COLA (Saeed et al. 2021)
    • Assigns high similarity between audio clip extracted from the same recording and low similarity to clips from different recordings
    • predicts a pari of encoded features are from the same recording or not
  • Multi-Format audio contrastive learning
    • assigns high similarity between the raw audio format and the corresponding spectral representation

    • maximizing agreement between between features included from the raw waveform and he spectrogram formats

Audio Pretext Task: Masked Languagee Modeling for ASR

ASR: Automatic speech recognition

  • Wav2Vec 2.0 (Baevski et al. 2020)

    • applies contrast siblings on the representation of mask portion of the audio

      ? to learn discrete tokens from them

    • speech recognition models: trained on these token, show better performance compared to those trained on conventional audio features / raw audio

  • HuBERT (Hsu et al. 2021, FAIR)

    • learned by alternating between an offline cadence clustering step and optimizing for cluster assignment prediction (similar to deep cluster)
  • Also employed by SpeechStew (Chan et al. 2021), Big SSL (Zhang et al. 2021)

Multimodal Pretext Tasks

applied to multimodal data, although the difinition of self-supervised learning gets kind of blurry here depending on whether you consider a multi-modal dataset as single unlabeled dataset or as if one modality gives supervision to another modality

  • MIL-NCE (Miech et al. 2020)

    • Find matching narration with video

    • trained constrastively to find matching narration with video, which can not only use for correcting misalignment in videos but also for action recognition, text to video retrieval, action localization and action segmentation

  • CLIP (Radford et al. ), ALIGN (Jia et al. 2021)

    • Contrast text and image embeddings from paired data

Language Pretext Tasks

Language Pretext Tasks: Generative Language Modeling
  • Pretrained language models:

    • They all rely on unsupervised text and try to predict one sentence from the context
    • only depend on the natural order of words and sequences
  • Some examples: changed the landscape of NLP research quite a lot

    • GPT

      ? Autogressive;

      ? predict the next token based on the previous tokens

    • BERT

      ? as a bi-directional transformer model

      ? Masked language modeling (MLM)

      ? Next sentence prediction (NSP) ? \Rightarrow ? a binary classifier for telling whether one sentence is the next sentence of the other

    • ALBERT

      ? Sentence order prediction (SOP) ? \Rightarrow ? Positive sample: a pair of two consecutive segments from the same document; Negative sample: same as above but with the segment order switch

    • ELECTRA

      ? Replaced token detection (RTD) ? \Rightarrow ? random tokens are replaced and considered corrected, in parallel a binary discriminator is trained together with the generative model to predict whether each token has been replaced

Language Pretext Tasks: Sentence Embedding
  • Skip-thought vectors (Kiros et al. 2015)

    • Predict sentences based on other sentences around
  • Quick-thought vectors (Logeswaran & Lee, 2018)

    • Identify the correct context sentence among other contrastive sentences

  • IS-BERT (“Info-Sentence BERT”; Zhang et al. 2020)

    • matual information maximization
  • SimCSE (“Simple Contrastive learning of Sentence Embeddings”; Gao et al. 2021)

    • Predict a sentence from itself with only dropout noise
    • One sentence gets two different versions of dropout augmentations

  • Most of the models for learning sentence embedding relies on supervised NLI (Natural Language Inference) datasets, such as SBERT (Reimers & Gurevych 2019), BERT-flow
  • Unsupervised sentence embedding models (e.g., unsupervised SimCSE) still have performance gap with the supervised version (e.g., supervised SimCSE)

Training Techniques

  • Data augmentation
  • In-batch negatives samples
  • Hard negative mining
  • Memory bank
  • Large batchsize

contrastive learning can provide good results in terms of transfer performance

Techniques: Data augmentation

  • Data augmentation setup is critical for learning good embedding

    • and generalizable embdding features
  • 方法:

    • Introduces the non-essential variations into examples without modifying semantic meanings
    • ? \Rightarrow ? thus encourages the model to learn the essential part within the representation

image augmentation; text augmentation

Techniques: Data augmentation – Image Augmentation
  • Basic Image Augmentation:

    • Random crop
    • color distortion
    • Gaussian blur
    • color jittering
    • random flip / rotation
    • etc.
  • Augmentation Strategies

    • AutoAugment (Cubuk, et al. 2018): Inspired by NAS
    • RandAugment (Cubuk et al. 2019): reduces NAS search space in AutoAugment
    • PBA (Population based augmentation; Ho et al. 2019): evolutionary algorithms
    • UDA (Unsupervised Data Augmentation ,Xie et al. 2019): select augmentation strategy to minimize the KL divergencec between the predicted distribution over an unlabelled example and its unlabelled augmented version
  • Image mixture

    • Mixup (Zhang et al. 2018): weighted pixel-wise combination of two images

      ? to create new sampls based on existed ones

    • Cutmix (Yun et al 2019): mix in a local region of one image into the other

    • MoCHi (Mixing of Contrastive Hard Negatives): mixture of hard negative samples

      ? explicitly maintains a queue of some number of negative samples sorted by similarity to the query in descending order ? \Rightarrow ? the first couple samples in the queue should be the hardest and negative samples ? \Rightarrow ? then new hard negative can be created by mixing images in this queue together or even with the query

Techniques: Data augmentation – Text Augmentation
  • Lexical (詞匯的) Edits.

    • (Just changing the words or tokens)

    • EDA (Easy Data Augmentation; Wei & Zhou 2019): Synonym replacement, random insertion / swap / deletion

    • Contextual Augmentation (Kobayashi 2018): word substition by BERT prediction

      ? try to find the replacement words using a bi-directional language model

  • Back-translation (Sennrich et al. 2015)

    • augments by first translating it to another language and then translating it back to the original language

      ? depends on the translation model ? \Rightarrow ? the meaning should stay largely unchanged

    • CERT (Fang et al. 2020) generates augmented sentences via back-translation

  • Dropout and Cutoff

    • SimCSE uses dropout (Gao et al. 2021)

      ? drouput: a universal way to apply transformnation on any input

      ? SimCSE: use drouput to creat different copies of the same text ? \Rightarrow ? universial because it doe not need expert knowledege about the attributes of this input modality (it is changes on the architecture level)

    • Cutoff augmentation for text (Shen et al. 2020)

      ? masking random selected tokens, feature columns, spans

Hard Negative Mining

What is “hard negative mining”
  • Hard negative samples are different to learn
    • They should have different labels from the anchor samples
    • But the embedding features may be very close
  • Hard negative mining is important for contrastive learning
  • Challenging negative samples encourages the model to learn better representations that can distinguish hard negatives from true positives
Explicit hard negative mining
  • Extract task-specific hard negative samples from labelled datasets
    • e.g., “contradiction” sentence pairs from NLI datasets.
    • (Most sentence embedding papers)
  • Keyword based retrieval
    • can be found by classic information retrieval models (Such as BM25)
  • Upweight the negative sample probability to be proportional to its similarity to the anchor sample
  • MoCHi: mine hard negative by sorting them according to similarity to the query in descending order
Implicit hard negative mining
  • In-batch negative samples
  • Memory bank (Wu et al. 2018, He et al. 2019)
    • Increase batch size
  • Large batch size via various training parallelism

Need large batchsize

Theories

Why does contrastive learning work?

Contrastive learning captures shared information betweem views

  • InfoNCE (van den Oord et al. 2018)

    • is a lower bound to MI (Mutual information) between views:

  • Minimizing InfoNCE leads to maximizing the MI between view1 and view2

    • 因此,minimizing the inforNCE loss ? \Rightarrow ? the encoder are optimizing the embedding space to retain as much information as possible that exsited between the two views
    • The info max principle in contrastive learning

  • Q: How can we design good views?

    • augmentations are crucial for the performance

The InfoMin Principle

  • Optimal views are at the sweet spot where it only encodes useful informnation for transfer
    • Minimal sufficient encoder depends on downstream tasks (Tian et al. 2020)

    • Composite loss for finding the sweet spot (Tsai et al. 2020)

      ? helps converging to a minimal sufficient encoder

To perform well in transfer learning ? \Rightarrow ? we want our model to capture the mutual information between the data x and the downstream label y I ( x ; y ) I(x;y) I(x;y)

  • if the mutual information between the views ( I ( v 1 ; v 2 ) I(v_1; v_2) I(v1?;v2?)) is smaller than I ( x ; y ) I(x;y) I(x;y) ? \Rightarrow ? the model would fail to capture useful information for the downstream tasks
  • Meanwhile, if the mutual information between the views are too large ? \Rightarrow ? would have excess information that is unrelated to the downstream tasks ? \Rightarrow ? the transfor performance would decrease due to the noise
  • ? \Rightarrow ? there is a sweet spot ? \Rightarrow ? the minimal sufficient encoder
  • This shows:
    • The optimal views are dependent on the downstream tasks

Alignment and Uniformity on the Hypersphere

  • Contrastively learned features are more uniform and aligned

    • Uniform : features should be distributed uniformly on the hypershere S d S^d Sd
    • Aligned : features from two views of the same input should be the same

  • compared with random initialized network or a network trained with the supervised learning
  • also measured the alignment measuring how close the distance between features from two views of the same input is

Dimensional Collapse

  • Contrastive methods sometimes suffer from dimensional collapse (Hua et al. 2021)
    • Features span lower-dimensional subspace instead
    • (Learned features span lower dimensional subspace instead of using the full dimensionality)
  • Two causes demonstrated by Jing et al (2021)
    • 1 Strong augmentation while creating the views
    • 2 implicit regularization caused by the gradient decent dynamics

Provable Guarantees for Contrastive Learning

  • Sampling complexity decreases when:
    • Adopting contrastive learning objectives (Arora et al. 2019)
    • Predicting the known distribution in teh data (Lee et al. 2020)
  • Linear classifier on learned representation is nearly optimal (Tosh et al. 2021)
  • Spectral Contrastive Learning (HaoChen et al. 2021)
    • based on a spectral decomposition of the augmentation graph

總之,對(duì)比學(xué)習(xí)理論起到了很大作用,但仍有很長的路要走

Feature directions

briefly discuss a few open research questions and areas of work to look into

Future Directions

  • Large batch size ? \Rightarrow ? improved transfer performance

  • High-quality large data corpus ? \Rightarrow ? better performance

    • Learning from synthetic or Web data
    • Measuring dataset quality and filtering / active learning ? \Rightarrow ? better control over data quality
  • Efficient negative sample selection

    • to do hard negative mining
    • (lage batchsize is not enough because batchsize cannot go to infinity)
  • Combine multiple pretext tasks

    • How to combine
    • Best strategies

  • Data augmentation tricks have critical impacts but are still quite ad-hoc

    • Modality-dependent: 大多數(shù)增強(qiáng)方法僅適用于單個(gè)modality ? \Rightarrow ? most of them are handcrafted by human

    • Theoretical foundations

      ? e.g., on why certain augmentation works better than others

      ? to guide us to find more efficient data augmentation

  • Improving training efficiency

    • Self-supervised learning methods are pushing the deep learning arms race (軍備競(jìng)賽)

      ? increase of model size and training batch size

      ? ? \Rightarrow ? leads to increase the cost both economically and environmentally

    • Direct impacts on the economical and environmental costs

  • Social biases in the embedding space

    • Early work in debiasing word embedding
    • Biases in Dataset

總結(jié)

以上是生活随笔為你收集整理的Open AI 自监督学习笔记:Self-Supervised Learning | Tutorial | NeurIPS 2021的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

无遮挡国产高潮视频免费观看 | 亚洲啪av永久无码精品放毛片 | 亚洲а∨天堂久久精品2021 | 欧美兽交xxxx×视频 | 国产色视频一区二区三区 | 国产成人精品视频ⅴa片软件竹菊 | 国产在线aaa片一区二区99 | 日日摸日日碰夜夜爽av | 精品无码成人片一区二区98 | 精品国产av色一区二区深夜久久 | 露脸叫床粗话东北少妇 | 久久国产自偷自偷免费一区调 | 人妻少妇精品久久 | 男人和女人高潮免费网站 | 日本爽爽爽爽爽爽在线观看免 | 国产乡下妇女做爰 | 久久久精品欧美一区二区免费 | 亚洲日韩一区二区三区 | 欧美日韩一区二区综合 | 亚拍精品一区二区三区探花 | 久久久久久久人妻无码中文字幕爆 | 国产色在线 | 国产 | 日本熟妇乱子伦xxxx | 中国女人内谢69xxxxxa片 | 中文亚洲成a人片在线观看 | 成年美女黄网站色大免费视频 | 国产激情综合五月久久 | aⅴ亚洲 日韩 色 图网站 播放 | 中文字幕无线码 | 亚洲精品午夜无码电影网 | 亚洲s色大片在线观看 | 中文字幕无码av激情不卡 | 国产亚洲精品久久久久久 | 国产sm调教视频在线观看 | 日韩亚洲欧美精品综合 | 日日摸夜夜摸狠狠摸婷婷 | 波多野结衣 黑人 | 久久99精品久久久久婷婷 | 少妇被黑人到高潮喷出白浆 | 无码人妻精品一区二区三区下载 | 午夜无码人妻av大片色欲 | 国产肉丝袜在线观看 | 乱码午夜-极国产极内射 | 一本精品99久久精品77 | 国产在线精品一区二区三区直播 | 最新国产麻豆aⅴ精品无码 | 国产成人无码一二三区视频 | 免费人成网站视频在线观看 | 精品国产麻豆免费人成网站 | 欧美高清在线精品一区 | 激情亚洲一区国产精品 | 精品乱码久久久久久久 | 秋霞特色aa大片 | 精品国产一区二区三区四区在线看 | 亚洲人成网站免费播放 | 牲欲强的熟妇农村老妇女视频 | 欧美精品一区二区精品久久 | 少妇人妻偷人精品无码视频 | 久久久久亚洲精品中文字幕 | 美女张开腿让人桶 | 伦伦影院午夜理论片 | 老司机亚洲精品影院 | 天堂а√在线中文在线 | 未满成年国产在线观看 | 精品久久久中文字幕人妻 | 思思久久99热只有频精品66 | 中文毛片无遮挡高清免费 | 欧美zoozzooz性欧美 | 久久精品人妻少妇一区二区三区 | 男女猛烈xx00免费视频试看 | 国产女主播喷水视频在线观看 | 18无码粉嫩小泬无套在线观看 | 午夜免费福利小电影 | 国产综合色产在线精品 | 国产精品国产三级国产专播 | 色 综合 欧美 亚洲 国产 | 亚洲日韩中文字幕在线播放 | 奇米影视7777久久精品人人爽 | 秋霞成人午夜鲁丝一区二区三区 | 大色综合色综合网站 | 久久久久成人片免费观看蜜芽 | 荡女精品导航 | 久久国语露脸国产精品电影 | 国产农村乱对白刺激视频 | 国产做国产爱免费视频 | 中文无码成人免费视频在线观看 | av在线亚洲欧洲日产一区二区 | 国产精品亚洲а∨无码播放麻豆 | 中文字幕精品av一区二区五区 | 亚洲成av人综合在线观看 | 午夜性刺激在线视频免费 | 成在人线av无码免观看麻豆 | 日日天干夜夜狠狠爱 | 成人精品天堂一区二区三区 | 成年美女黄网站色大免费全看 | 精品久久久久久亚洲精品 | 一本久久a久久精品亚洲 | 国产亚洲美女精品久久久2020 | 天堂亚洲免费视频 | 学生妹亚洲一区二区 | 亚无码乱人伦一区二区 | 国产亚洲tv在线观看 | 国产成人精品一区二区在线小狼 | 人妻少妇被猛烈进入中文字幕 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲男女内射在线播放 | 国产精品久久久久久久影院 | 日日麻批免费40分钟无码 | 樱花草在线社区www | 四十如虎的丰满熟妇啪啪 | 久久成人a毛片免费观看网站 | 日本欧美一区二区三区乱码 | 久久久亚洲欧洲日产国码αv | 欧美自拍另类欧美综合图片区 | 国产无遮挡又黄又爽免费视频 | 国产亚洲人成在线播放 | 国产在线无码精品电影网 | 亚洲精品欧美二区三区中文字幕 | 女人被男人爽到呻吟的视频 | 中文字幕无码免费久久9一区9 | 日本高清一区免费中文视频 | 日本精品人妻无码免费大全 | 午夜不卡av免费 一本久久a久久精品vr综合 | 99久久无码一区人妻 | 久久精品人人做人人综合试看 | 性欧美熟妇videofreesex | 六月丁香婷婷色狠狠久久 | 国产在线一区二区三区四区五区 | 亚洲国产精品美女久久久久 | 熟妇人妻无乱码中文字幕 | 欧美兽交xxxx×视频 | 免费观看黄网站 | 欧美国产日韩久久mv | 四虎影视成人永久免费观看视频 | 5858s亚洲色大成网站www | 永久免费观看美女裸体的网站 | 欧美性生交xxxxx久久久 | 国产精品二区一区二区aⅴ污介绍 | 3d动漫精品啪啪一区二区中 | 激情内射亚州一区二区三区爱妻 | 内射老妇bbwx0c0ck | 极品嫩模高潮叫床 | 女人高潮内射99精品 | 小sao货水好多真紧h无码视频 | 亚洲色偷偷偷综合网 | 日韩人妻少妇一区二区三区 | 国产精品无码一区二区桃花视频 | 亚洲一区二区三区 | 久久久精品国产sm最大网站 | 国产精品自产拍在线观看 | 亚洲爆乳无码专区 | 亚洲中文字幕在线无码一区二区 | 亚洲 a v无 码免 费 成 人 a v | 精品国产精品久久一区免费式 | 无码国产乱人伦偷精品视频 | 国产艳妇av在线观看果冻传媒 | 国产69精品久久久久app下载 | aⅴ亚洲 日韩 色 图网站 播放 | 丁香花在线影院观看在线播放 | 黄网在线观看免费网站 | 亚洲最大成人网站 | 国产亚洲美女精品久久久2020 | 亚洲综合色区中文字幕 | 纯爱无遮挡h肉动漫在线播放 | 乱中年女人伦av三区 | 久久久国产精品无码免费专区 | 青青久在线视频免费观看 | 久久精品中文字幕大胸 | 国产深夜福利视频在线 | 久久无码中文字幕免费影院蜜桃 | 国产精品欧美成人 | 麻豆人妻少妇精品无码专区 | 国产一区二区三区日韩精品 | 中文字幕日产无线码一区 | 蜜桃无码一区二区三区 | 99久久精品无码一区二区毛片 | 中文字幕亚洲情99在线 | 一本久久a久久精品vr综合 | 国产人妻精品午夜福利免费 | 99国产欧美久久久精品 | 国产日产欧产精品精品app | 亚洲色无码一区二区三区 | 成熟人妻av无码专区 | 国产成人无码专区 | 帮老师解开蕾丝奶罩吸乳网站 | 日日噜噜噜噜夜夜爽亚洲精品 | 国产午夜精品一区二区三区嫩草 | 在教室伦流澡到高潮hnp视频 | 亚洲色大成网站www国产 | 亚洲色大成网站www国产 | www一区二区www免费 | 久激情内射婷内射蜜桃人妖 | 97夜夜澡人人双人人人喊 | 国产网红无码精品视频 | 精品偷拍一区二区三区在线看 | 99麻豆久久久国产精品免费 | 白嫩日本少妇做爰 | 中文精品无码中文字幕无码专区 | 亚洲第一无码av无码专区 | 人妻少妇精品无码专区动漫 | 精品 日韩 国产 欧美 视频 | 亚洲精品国偷拍自产在线观看蜜桃 | 亚洲国产精品毛片av不卡在线 | 暴力强奷在线播放无码 | 久久精品丝袜高跟鞋 | 日本一卡2卡3卡四卡精品网站 | 久久久久久国产精品无码下载 | 成人精品天堂一区二区三区 | 俄罗斯老熟妇色xxxx | 欧美日韩人成综合在线播放 | 国产精品无套呻吟在线 | 麻豆人妻少妇精品无码专区 | 国产成人无码专区 | 国产又爽又猛又粗的视频a片 | 欧美一区二区三区视频在线观看 | 日韩欧美中文字幕公布 | 国产亚洲精品久久久久久久久动漫 | 水蜜桃色314在线观看 | 丰满少妇熟乱xxxxx视频 | 色婷婷香蕉在线一区二区 | 无码国内精品人妻少妇 | 欧美丰满老熟妇xxxxx性 | 亚洲精品国产品国语在线观看 | 黑人巨大精品欧美黑寡妇 | 2020久久超碰国产精品最新 | 国内综合精品午夜久久资源 | 国产人妻精品午夜福利免费 | 曰韩少妇内射免费播放 | 亚洲国产成人a精品不卡在线 | 亚洲精品国偷拍自产在线观看蜜桃 | 麻豆国产97在线 | 欧洲 | 国产做国产爱免费视频 | 久久久精品人妻久久影视 | aa片在线观看视频在线播放 | 国产成人无码a区在线观看视频app | 成年美女黄网站色大免费全看 | 国产激情综合五月久久 | 亚洲精品国偷拍自产在线麻豆 | 国产莉萝无码av在线播放 | 国产无遮挡又黄又爽免费视频 | 精品熟女少妇av免费观看 | 色 综合 欧美 亚洲 国产 | 亚洲s码欧洲m码国产av | 福利一区二区三区视频在线观看 | 久久成人a毛片免费观看网站 | 在线播放无码字幕亚洲 | 亚洲一区二区三区在线观看网站 | 人妻插b视频一区二区三区 | 蜜桃无码一区二区三区 | 麻豆av传媒蜜桃天美传媒 | 亚洲欧洲日本无在线码 | 55夜色66夜色国产精品视频 | 国产午夜手机精彩视频 | 免费人成在线观看网站 | 国产精品va在线观看无码 | 国产莉萝无码av在线播放 | 国产 浪潮av性色四虎 | 国产精品人妻一区二区三区四 | 中文无码精品a∨在线观看不卡 | 无码纯肉视频在线观看 | 精品一区二区三区无码免费视频 | 一本久道久久综合狠狠爱 | 88国产精品欧美一区二区三区 | 日日橹狠狠爱欧美视频 | 成人免费无码大片a毛片 | 无码人中文字幕 | 亚洲午夜福利在线观看 | 欧美日韩一区二区三区自拍 | 久久久av男人的天堂 | 未满小14洗澡无码视频网站 | 国产办公室秘书无码精品99 | 久久久国产精品无码免费专区 | 亚洲日本一区二区三区在线 | 久久天天躁狠狠躁夜夜免费观看 | аⅴ资源天堂资源库在线 | 无码人妻av免费一区二区三区 | 日韩欧美群交p片內射中文 | 国产女主播喷水视频在线观看 | 国模大胆一区二区三区 | av在线亚洲欧洲日产一区二区 | 日韩精品无码一区二区中文字幕 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 中文字幕无码人妻少妇免费 | 亚洲啪av永久无码精品放毛片 | 亚洲精品国偷拍自产在线麻豆 | 国产综合在线观看 | 久久综合九色综合97网 | 乌克兰少妇xxxx做受 | 国产精品多人p群无码 | 国内精品一区二区三区不卡 | 久久午夜无码鲁丝片秋霞 | 久久zyz资源站无码中文动漫 | 内射白嫩少妇超碰 | 四虎国产精品免费久久 | 亚洲一区二区三区播放 | 麻豆果冻传媒2021精品传媒一区下载 | 久久久成人毛片无码 | 国产三级久久久精品麻豆三级 | 亚洲欧洲中文日韩av乱码 | 久久久久亚洲精品中文字幕 | 久久精品无码一区二区三区 | 国产高清av在线播放 | 人人妻人人澡人人爽人人精品浪潮 | 国产亚洲精品久久久闺蜜 | 无码吃奶揉捏奶头高潮视频 | 扒开双腿吃奶呻吟做受视频 | 男人扒开女人内裤强吻桶进去 | 俺去俺来也www色官网 | 天堂无码人妻精品一区二区三区 | 亚洲爆乳无码专区 | 97精品人妻一区二区三区香蕉 | 久久99精品国产.久久久久 | 午夜肉伦伦影院 | 内射爽无广熟女亚洲 | a国产一区二区免费入口 | 午夜精品久久久久久久 | 久久久精品国产sm最大网站 | 精品久久8x国产免费观看 | 麻豆国产人妻欲求不满谁演的 | 夫妻免费无码v看片 | 97se亚洲精品一区 | 欧美 日韩 亚洲 在线 | 久久精品国产日本波多野结衣 | 在线欧美精品一区二区三区 | 欧美日韩人成综合在线播放 | 国产成人无码av在线影院 | 国产又爽又黄又刺激的视频 | 国产真实乱对白精彩久久 | 亚洲中文字幕在线无码一区二区 | 国产人妻精品一区二区三区不卡 | 日本高清一区免费中文视频 | 国产精品99爱免费视频 | 欧美成人免费全部网站 | 日日夜夜撸啊撸 | 欧美性黑人极品hd | 亚洲日韩av一区二区三区中文 | 国产av一区二区三区最新精品 | 日本护士毛茸茸高潮 | 色综合天天综合狠狠爱 | 色欲久久久天天天综合网精品 | 少妇被粗大的猛进出69影院 | 国产精品无码成人午夜电影 | 真人与拘做受免费视频一 | 国产精品a成v人在线播放 | 波多野结衣av一区二区全免费观看 | 性色欲情网站iwww九文堂 | 熟女少妇在线视频播放 | 欧美日韩在线亚洲综合国产人 | 亚洲国产一区二区三区在线观看 | 中文毛片无遮挡高清免费 | 一区二区三区高清视频一 | 无码人妻黑人中文字幕 | 久久久精品人妻久久影视 | 在线观看免费人成视频 | 娇妻被黑人粗大高潮白浆 | 东京无码熟妇人妻av在线网址 | 日本一本二本三区免费 | 亚洲熟女一区二区三区 | 国产精品久久久午夜夜伦鲁鲁 | 精品少妇爆乳无码av无码专区 | 美女张开腿让人桶 | 成年美女黄网站色大免费全看 | 在线 国产 欧美 亚洲 天堂 | 男女爱爱好爽视频免费看 | 亚洲国产成人a精品不卡在线 | 无码国内精品人妻少妇 | 欧美性生交活xxxxxdddd | 国产精品对白交换视频 | 我要看www免费看插插视频 | 俺去俺来也www色官网 | 亚洲伊人久久精品影院 | 欧美三级不卡在线观看 | 国内少妇偷人精品视频免费 | 精品欧美一区二区三区久久久 | 国产国产精品人在线视 | 综合激情五月综合激情五月激情1 | 曰韩少妇内射免费播放 | 久久99热只有频精品8 | 欧美 丝袜 自拍 制服 另类 | 欧美三级a做爰在线观看 | 天天摸天天透天天添 | 亚洲精品一区二区三区婷婷月 | 最近中文2019字幕第二页 | 扒开双腿疯狂进出爽爽爽视频 | 亚洲七七久久桃花影院 | 一本色道久久综合亚洲精品不卡 | www国产亚洲精品久久久日本 | 国产一区二区三区四区五区加勒比 | 激情内射日本一区二区三区 | 丝袜人妻一区二区三区 | 久久精品国产日本波多野结衣 | 玩弄少妇高潮ⅹxxxyw | 久久久久成人精品免费播放动漫 | 国产特级毛片aaaaaa高潮流水 | 成年美女黄网站色大免费全看 | 人妻无码αv中文字幕久久琪琪布 | 国产偷自视频区视频 | 暴力强奷在线播放无码 | 日韩人妻无码一区二区三区久久99 | 玩弄中年熟妇正在播放 | 日韩欧美成人免费观看 | 中文字幕人成乱码熟女app | 成熟女人特级毛片www免费 | 爆乳一区二区三区无码 | 亚洲精品一区三区三区在线观看 | 欧美freesex黑人又粗又大 | 国产精品久久久久无码av色戒 | 亚洲毛片av日韩av无码 | 午夜理论片yy44880影院 | 久久久国产一区二区三区 | 中文无码成人免费视频在线观看 | 日韩无码专区 | 亚洲一区二区三区香蕉 | 国产色xx群视频射精 | 久久国产精品萌白酱免费 | 麻豆国产人妻欲求不满 | 久久99精品久久久久久动态图 | 亚洲精品一区二区三区在线观看 | 少妇人妻大乳在线视频 | 免费看男女做好爽好硬视频 | 日日摸夜夜摸狠狠摸婷婷 | 久久精品视频在线看15 | 亚洲区小说区激情区图片区 | 偷窥村妇洗澡毛毛多 | 一区二区三区高清视频一 | 亚洲欧洲日本无在线码 | 日本爽爽爽爽爽爽在线观看免 | 久激情内射婷内射蜜桃人妖 | 国产av人人夜夜澡人人爽麻豆 | 理论片87福利理论电影 | 色婷婷欧美在线播放内射 | 亚洲乱码日产精品bd | 亚洲精品一区三区三区在线观看 | 亚洲精品国产a久久久久久 | 亚洲a无码综合a国产av中文 | 理论片87福利理论电影 | 亚洲色www成人永久网址 | 久久精品国产一区二区三区肥胖 | 欧美阿v高清资源不卡在线播放 | 久久熟妇人妻午夜寂寞影院 | 久久这里只有精品视频9 | 亚洲熟妇色xxxxx亚洲 | 日本免费一区二区三区最新 | 国产精品久久福利网站 | 精品久久久久久人妻无码中文字幕 | 亚洲成av人片天堂网无码】 | 国产9 9在线 | 中文 | 少妇久久久久久人妻无码 | 人妻少妇精品无码专区二区 | 最近免费中文字幕中文高清百度 | 色婷婷综合激情综在线播放 | 婷婷综合久久中文字幕蜜桃三电影 | 中文字幕+乱码+中文字幕一区 | 日韩 欧美 动漫 国产 制服 | 国产黄在线观看免费观看不卡 | 午夜精品一区二区三区的区别 | 中文字幕无线码免费人妻 | 国语精品一区二区三区 | 18无码粉嫩小泬无套在线观看 | 亚洲最大成人网站 | 九月婷婷人人澡人人添人人爽 | 精品亚洲韩国一区二区三区 | 国语精品一区二区三区 | 人人超人人超碰超国产 | 亚洲a无码综合a国产av中文 | 国产精品99爱免费视频 | 俺去俺来也www色官网 | 国产精品无码mv在线观看 | 一二三四社区在线中文视频 | 国产精品-区区久久久狼 | 强辱丰满人妻hd中文字幕 | 亚洲熟妇自偷自拍另类 | 欧美精品无码一区二区三区 | 国产无套内射久久久国产 | 国产成人无码午夜视频在线观看 | 一个人看的www免费视频在线观看 | 人人爽人人澡人人人妻 | 亚洲 日韩 欧美 成人 在线观看 | www国产精品内射老师 | 在线视频网站www色 | 强奷人妻日本中文字幕 | 国产人妻精品一区二区三区 | 色综合久久中文娱乐网 | 久久久久久av无码免费看大片 | 国产精品国产三级国产专播 | 粉嫩少妇内射浓精videos | 国产午夜精品一区二区三区嫩草 | 97精品人妻一区二区三区香蕉 | 成熟人妻av无码专区 | 无码国模国产在线观看 | 性色av无码免费一区二区三区 | 午夜精品一区二区三区的区别 | 久久无码中文字幕免费影院蜜桃 | 国产免费观看黄av片 | 久久五月精品中文字幕 | 久久久久成人片免费观看蜜芽 | 亚洲国产精品久久人人爱 | 欧美老妇交乱视频在线观看 | 无码国产乱人伦偷精品视频 | 亚洲小说春色综合另类 | 国产人妻久久精品二区三区老狼 | √天堂资源地址中文在线 | 少妇一晚三次一区二区三区 | 久久zyz资源站无码中文动漫 | 妺妺窝人体色www婷婷 | 日本一区二区更新不卡 | 初尝人妻少妇中文字幕 | 玩弄中年熟妇正在播放 | 国产精品99久久精品爆乳 | 亚洲综合久久一区二区 | 国产高清不卡无码视频 | 人人澡人人妻人人爽人人蜜桃 | 波多野结衣av一区二区全免费观看 | 国产激情综合五月久久 | 国产精品久久国产精品99 | 欧洲精品码一区二区三区免费看 | 亚洲日韩av一区二区三区四区 | 国产成人精品久久亚洲高清不卡 | 国产精品成人av在线观看 | 丰满少妇人妻久久久久久 | 国产精品18久久久久久麻辣 | 免费乱码人妻系列无码专区 | 99久久精品午夜一区二区 | 熟妇女人妻丰满少妇中文字幕 | 国精产品一品二品国精品69xx | 国产精品va在线观看无码 | 国产香蕉尹人视频在线 | 国产激情无码一区二区app | 日韩精品成人一区二区三区 | 性色av无码免费一区二区三区 | 蜜臀aⅴ国产精品久久久国产老师 | 97精品人妻一区二区三区香蕉 | 少妇高潮喷潮久久久影院 | 一二三四社区在线中文视频 | 强开小婷嫩苞又嫩又紧视频 | 国产综合在线观看 | 女人被男人躁得好爽免费视频 | 国产精品福利视频导航 | 无码纯肉视频在线观看 | 国产做国产爱免费视频 | 四十如虎的丰满熟妇啪啪 | 在线播放无码字幕亚洲 | 午夜精品一区二区三区在线观看 | 精品无码国产自产拍在线观看蜜 | 黑人粗大猛烈进出高潮视频 | 亚洲欧美日韩综合久久久 | 97人妻精品一区二区三区 | 日韩亚洲欧美中文高清在线 | 久久精品国产大片免费观看 | 精品国产aⅴ无码一区二区 | 粉嫩少妇内射浓精videos | 国产亚洲精品久久久久久久久动漫 | 国产无遮挡又黄又爽免费视频 | 国产亚洲精品久久久久久大师 | 18黄暴禁片在线观看 | 久久久久久a亚洲欧洲av冫 | 久久亚洲日韩精品一区二区三区 | 亲嘴扒胸摸屁股激烈网站 | 精品水蜜桃久久久久久久 | 国产精品久久久久久亚洲毛片 | 人人超人人超碰超国产 | 精品久久久中文字幕人妻 | 一本色道婷婷久久欧美 | 国产又爽又猛又粗的视频a片 | 精品国产国产综合精品 | 亚洲精品久久久久久一区二区 | 一本久道高清无码视频 | 色欲人妻aaaaaaa无码 | 国产高潮视频在线观看 | 精品无码成人片一区二区98 | 亚洲综合色区中文字幕 | 成人性做爰aaa片免费看不忠 | 四虎国产精品一区二区 | 精品国产精品久久一区免费式 | 亚洲综合在线一区二区三区 | 国产精品嫩草久久久久 | 中文无码成人免费视频在线观看 | 午夜精品久久久内射近拍高清 | 亚洲伊人久久精品影院 | 天天综合网天天综合色 | 日本一区二区更新不卡 | 亲嘴扒胸摸屁股激烈网站 | 国产精品va在线播放 | 3d动漫精品啪啪一区二区中 | 国内综合精品午夜久久资源 | 丰满少妇弄高潮了www | 国产三级久久久精品麻豆三级 | 精品亚洲成av人在线观看 | 免费国产黄网站在线观看 | 蜜桃视频韩日免费播放 | 人人妻人人澡人人爽精品欧美 | 帮老师解开蕾丝奶罩吸乳网站 | 国产色精品久久人妻 | 日本乱偷人妻中文字幕 | 中文字幕无码日韩欧毛 | 日韩av无码中文无码电影 | 露脸叫床粗话东北少妇 | 日本一区二区更新不卡 | 激情人妻另类人妻伦 | 亚洲欧美日韩成人高清在线一区 | 我要看www免费看插插视频 | 国产成人综合美国十次 | 亚洲理论电影在线观看 | 精品乱子伦一区二区三区 | 日本丰满护士爆乳xxxx | 国产一区二区三区精品视频 | 日本护士xxxxhd少妇 | 日本一卡2卡3卡4卡无卡免费网站 国产一区二区三区影院 | 欧美老妇与禽交 | 在线 国产 欧美 亚洲 天堂 | 亚洲国产成人a精品不卡在线 | 国产美女极度色诱视频www | 午夜福利试看120秒体验区 | 思思久久99热只有频精品66 | 午夜福利一区二区三区在线观看 | 国产精品99爱免费视频 | 亚洲日韩中文字幕在线播放 | 国产激情艳情在线看视频 | 奇米影视7777久久精品 | 国产乱子伦视频在线播放 | 内射后入在线观看一区 | 国产激情无码一区二区 | 亚洲精品综合一区二区三区在线 | 久久久久久a亚洲欧洲av冫 | 99久久精品日本一区二区免费 | 国产精品a成v人在线播放 | 日韩精品久久久肉伦网站 | 欧美肥老太牲交大战 | 亚洲色大成网站www | 精品少妇爆乳无码av无码专区 | 国产成人综合在线女婷五月99播放 | 国产成人无码午夜视频在线观看 | 内射巨臀欧美在线视频 | 色婷婷久久一区二区三区麻豆 | 又粗又大又硬又长又爽 | 骚片av蜜桃精品一区 | 国产精品免费大片 | 人人妻人人澡人人爽欧美一区九九 | 成年美女黄网站色大免费全看 | 久久精品女人天堂av免费观看 | 久久国产精品萌白酱免费 | av在线亚洲欧洲日产一区二区 | 亚洲熟妇色xxxxx亚洲 | 欧美 亚洲 国产 另类 | 性色av无码免费一区二区三区 | 内射巨臀欧美在线视频 | 久久综合香蕉国产蜜臀av | 久久综合九色综合欧美狠狠 | 熟妇人妻激情偷爽文 | 精品亚洲韩国一区二区三区 | 久久亚洲a片com人成 | 国产精品久久久久久无码 | 中国女人内谢69xxxx | 99精品久久毛片a片 | 1000部啪啪未满十八勿入下载 | 女人高潮内射99精品 | 高清不卡一区二区三区 | 国产情侣作爱视频免费观看 | 日韩无套无码精品 | 亚洲精品中文字幕久久久久 | 亚洲色www成人永久网址 | 99精品国产综合久久久久五月天 | 免费观看又污又黄的网站 | 亚洲欧美中文字幕5发布 | 国产成人无码av一区二区 | 免费视频欧美无人区码 | 亚洲成av人片天堂网无码】 | 无码人妻精品一区二区三区不卡 | 亚洲 激情 小说 另类 欧美 | 无码人中文字幕 | 精品国产青草久久久久福利 | 无码人妻丰满熟妇区五十路百度 | 四虎国产精品一区二区 | 久久国产精品偷任你爽任你 | 无码人妻久久一区二区三区不卡 | 国产在线精品一区二区三区直播 | 色一情一乱一伦一区二区三欧美 | 一区二区三区乱码在线 | 欧洲 | 精品久久久无码中文字幕 | 激情内射亚州一区二区三区爱妻 | 国产精品无码永久免费888 | 精品国产麻豆免费人成网站 | 又紧又大又爽精品一区二区 | 一本精品99久久精品77 | 亚洲狠狠色丁香婷婷综合 | 国产在线精品一区二区高清不卡 | 人人爽人人澡人人高潮 | 亚洲中文字幕在线无码一区二区 | 人人爽人人澡人人高潮 | 天堂无码人妻精品一区二区三区 | 97夜夜澡人人爽人人喊中国片 | 天天做天天爱天天爽综合网 | 亚洲国产精品毛片av不卡在线 | 欧美阿v高清资源不卡在线播放 | 在线a亚洲视频播放在线观看 | 无码人妻精品一区二区三区下载 | 亚洲精品国偷拍自产在线麻豆 | 日韩无码专区 | 国产口爆吞精在线视频 | а√资源新版在线天堂 | 色欲人妻aaaaaaa无码 | 国内精品一区二区三区不卡 | 一本无码人妻在中文字幕免费 | 人妻夜夜爽天天爽三区 | 中文字幕乱码人妻无码久久 | 久久精品女人天堂av免费观看 | 国产特级毛片aaaaaa高潮流水 | 国产超级va在线观看视频 | 国语精品一区二区三区 | 日本xxxx色视频在线观看免费 | 国产又爽又猛又粗的视频a片 | 成人毛片一区二区 | 久久久国产精品无码免费专区 | 国产精品亚洲一区二区三区喷水 | 两性色午夜视频免费播放 | 一二三四社区在线中文视频 | 国产美女精品一区二区三区 | 少妇激情av一区二区 | 天天拍夜夜添久久精品大 | 成人免费视频一区二区 | 亚洲色大成网站www | 乱人伦中文视频在线观看 | 久久五月精品中文字幕 | 亚洲成av人片在线观看无码不卡 | 亚洲啪av永久无码精品放毛片 | 欧美成人午夜精品久久久 | 久久精品国产一区二区三区 | 免费观看激色视频网站 | 人人妻人人澡人人爽精品欧美 | 国产成人无码av一区二区 | 国产精华av午夜在线观看 | 久久天天躁狠狠躁夜夜免费观看 | yw尤物av无码国产在线观看 | 爆乳一区二区三区无码 | 国产午夜福利亚洲第一 | 男女作爱免费网站 | 狠狠亚洲超碰狼人久久 | 久久亚洲中文字幕无码 | 国产成人精品三级麻豆 | 蜜桃无码一区二区三区 | 色综合久久久无码中文字幕 | 动漫av网站免费观看 | 欧美熟妇另类久久久久久不卡 | 性开放的女人aaa片 | 亚洲精品成人福利网站 | 98国产精品综合一区二区三区 | 18黄暴禁片在线观看 | 欧美一区二区三区视频在线观看 | 内射后入在线观看一区 | 久久精品一区二区三区四区 | 日本精品少妇一区二区三区 | 免费人成网站视频在线观看 | 亚洲中文字幕乱码av波多ji | 久久久久99精品成人片 | 久久综合激激的五月天 | 欧美日韩一区二区三区自拍 | 日本熟妇大屁股人妻 | 亚洲色无码一区二区三区 | 国产熟女一区二区三区四区五区 | 亚洲一区二区三区无码久久 | 99精品久久毛片a片 | 亚洲日韩中文字幕在线播放 | 97久久国产亚洲精品超碰热 | 午夜福利一区二区三区在线观看 | 日日摸日日碰夜夜爽av | 国产三级久久久精品麻豆三级 | 狂野欧美性猛交免费视频 | 奇米影视888欧美在线观看 | 成人精品天堂一区二区三区 | 国产无套粉嫩白浆在线 | 在线播放亚洲第一字幕 | 女人被男人爽到呻吟的视频 | 久久亚洲精品成人无码 | 久久亚洲中文字幕无码 | 亚洲欧美色中文字幕在线 | 亚洲色欲久久久综合网东京热 | 亚洲 日韩 欧美 成人 在线观看 | 最新版天堂资源中文官网 | 国产区女主播在线观看 | 熟妇人妻中文av无码 | 色综合久久久无码中文字幕 | 中文字幕人妻无码一夲道 | 丁香啪啪综合成人亚洲 | 国内揄拍国内精品人妻 | 国产av一区二区三区最新精品 | 蜜臀av无码人妻精品 | 乱人伦人妻中文字幕无码久久网 | 久久久久久亚洲精品a片成人 | 99久久精品日本一区二区免费 | a国产一区二区免费入口 | 成 人 免费观看网站 | 成人性做爰aaa片免费看 | 无码av中文字幕免费放 | 午夜福利试看120秒体验区 | 在线 国产 欧美 亚洲 天堂 | 国产精品久久福利网站 | 蜜桃视频插满18在线观看 | 99麻豆久久久国产精品免费 | 77777熟女视频在线观看 а天堂中文在线官网 | 久久亚洲a片com人成 | 国产精品手机免费 | 少妇无套内谢久久久久 | 色欲久久久天天天综合网精品 | 5858s亚洲色大成网站www | 兔费看少妇性l交大片免费 | 欧洲熟妇色 欧美 | 捆绑白丝粉色jk震动捧喷白浆 | 国产精品毛多多水多 | 高清无码午夜福利视频 | 国产麻豆精品一区二区三区v视界 | 欧美性色19p | 久久久精品国产sm最大网站 | a国产一区二区免费入口 | 小sao货水好多真紧h无码视频 | 亚洲精品欧美二区三区中文字幕 | 蜜桃av抽搐高潮一区二区 | 国产无套内射久久久国产 | 国产办公室秘书无码精品99 | 国产色xx群视频射精 | 国产激情精品一区二区三区 | 中文无码精品a∨在线观看不卡 | 女人被爽到呻吟gif动态图视看 | 免费人成网站视频在线观看 | 永久黄网站色视频免费直播 | 国产一区二区三区影院 | 国产精品高潮呻吟av久久4虎 | 欧美性生交活xxxxxdddd | 超碰97人人做人人爱少妇 | 欧美激情内射喷水高潮 | 狠狠躁日日躁夜夜躁2020 | 国产suv精品一区二区五 | 在线视频网站www色 | 麻豆人妻少妇精品无码专区 | 国内少妇偷人精品视频 | 日韩成人一区二区三区在线观看 | 久久熟妇人妻午夜寂寞影院 | 国产人妻久久精品二区三区老狼 | 97色伦图片97综合影院 | 在线观看国产一区二区三区 | 国产深夜福利视频在线 | 成人无码精品一区二区三区 | 97夜夜澡人人双人人人喊 | √天堂中文官网8在线 | 亚洲欧美日韩综合久久久 | yw尤物av无码国产在线观看 | 九九综合va免费看 | 国产莉萝无码av在线播放 | 亚洲成av人在线观看网址 | 人人妻人人澡人人爽欧美精品 | 日韩人妻少妇一区二区三区 | 欧美日韩色另类综合 | 日本在线高清不卡免费播放 | 午夜时刻免费入口 | 国产激情综合五月久久 | 色综合久久88色综合天天 | 久久人妻内射无码一区三区 | 国产午夜精品一区二区三区嫩草 | 亚洲欧美国产精品久久 | 超碰97人人做人人爱少妇 | 日日干夜夜干 | 狠狠色噜噜狠狠狠狠7777米奇 | 国产成人综合在线女婷五月99播放 | 国产免费无码一区二区视频 | 国产精品人人妻人人爽 | 极品嫩模高潮叫床 | 激情五月综合色婷婷一区二区 | 任你躁国产自任一区二区三区 | 国产又爽又黄又刺激的视频 | 久久久亚洲欧洲日产国码αv | 亚洲国产高清在线观看视频 | 黄网在线观看免费网站 | 欧美精品国产综合久久 | 亚洲毛片av日韩av无码 | 久久精品人人做人人综合试看 | 综合网日日天干夜夜久久 | 成熟妇人a片免费看网站 | 免费中文字幕日韩欧美 | 亚拍精品一区二区三区探花 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 亚洲国产av美女网站 | 人妻少妇被猛烈进入中文字幕 | 国产av无码专区亚洲a∨毛片 | 国产熟女一区二区三区四区五区 | 欧美国产日韩亚洲中文 | 丰满少妇高潮惨叫视频 | av小次郎收藏 | 亚洲成色在线综合网站 | 一本大道久久东京热无码av | 女人色极品影院 | 国产香蕉尹人综合在线观看 | 男人的天堂2018无码 | 亚洲国产精品无码久久久久高潮 | 综合激情五月综合激情五月激情1 | 成年女人永久免费看片 | 欧美喷潮久久久xxxxx | 欧美激情内射喷水高潮 | 88国产精品欧美一区二区三区 | 亚洲精品久久久久中文第一幕 | 成人片黄网站色大片免费观看 | 国产成人无码区免费内射一片色欲 | 日欧一片内射va在线影院 | 久久97精品久久久久久久不卡 | 国产精品美女久久久 | 亚洲综合在线一区二区三区 | 无码人妻丰满熟妇区五十路百度 | 国内少妇偷人精品视频免费 | 野外少妇愉情中文字幕 | 久久亚洲精品成人无码 | 国产精品国产三级国产专播 | 久久久久国色av免费观看性色 | 老司机亚洲精品影院无码 | 97人妻精品一区二区三区 | 亚洲欧美日韩国产精品一区二区 | 伊人久久婷婷五月综合97色 | 最近免费中文字幕中文高清百度 | 国产精品内射视频免费 | 人人爽人人澡人人高潮 | 国产乱人无码伦av在线a | 特大黑人娇小亚洲女 | 好男人社区资源 | 两性色午夜免费视频 | 夜夜躁日日躁狠狠久久av | 人人妻人人澡人人爽欧美一区 | 在线亚洲高清揄拍自拍一品区 | 免费国产黄网站在线观看 | 成人精品天堂一区二区三区 | 色婷婷欧美在线播放内射 | 在线精品亚洲一区二区 | 亚洲中文字幕无码中文字在线 | 欧美性猛交内射兽交老熟妇 | 日本在线高清不卡免费播放 | 奇米影视7777久久精品 | 久久无码中文字幕免费影院蜜桃 | 国产亚洲精品久久久久久久久动漫 | 国产无遮挡又黄又爽又色 | 蜜桃臀无码内射一区二区三区 | 乱码av麻豆丝袜熟女系列 | av无码久久久久不卡免费网站 | 亚洲va欧美va天堂v国产综合 | 国产凸凹视频一区二区 | 精品欧洲av无码一区二区三区 | 日本va欧美va欧美va精品 | 亚洲人成网站在线播放942 | 在线 国产 欧美 亚洲 天堂 | 樱花草在线社区www | 国产超级va在线观看视频 | 色欲综合久久中文字幕网 | 国产九九九九九九九a片 | 国产小呦泬泬99精品 | 久久亚洲精品中文字幕无男同 | 亚洲成色在线综合网站 | 精品久久久久香蕉网 | 嫩b人妻精品一区二区三区 | 在线亚洲高清揄拍自拍一品区 | 国产精品永久免费视频 | 一本无码人妻在中文字幕免费 | 久久亚洲精品中文字幕无男同 | 麻豆果冻传媒2021精品传媒一区下载 | 久久久国产一区二区三区 | 激情内射日本一区二区三区 | 亚洲熟妇自偷自拍另类 | 亚洲中文字幕成人无码 | 国产精品丝袜黑色高跟鞋 | 老熟妇仑乱视频一区二区 | 野外少妇愉情中文字幕 | 一本色道婷婷久久欧美 | 精品无码一区二区三区的天堂 | 国产精品亚洲一区二区三区喷水 | 一个人看的www免费视频在线观看 | 色综合久久88色综合天天 | 中文字幕人妻无码一区二区三区 | 久9re热视频这里只有精品 | 国内丰满熟女出轨videos | 中文字幕人妻丝袜二区 | 女人高潮内射99精品 | 无码国产色欲xxxxx视频 | 成在人线av无码免费 | 亚洲成a人片在线观看无码3d | 国产特级毛片aaaaaa高潮流水 | 中文字幕无码av激情不卡 | 最新版天堂资源中文官网 | 熟妇女人妻丰满少妇中文字幕 | 国产欧美熟妇另类久久久 | 色诱久久久久综合网ywww | 性色欲情网站iwww九文堂 | 亚洲熟妇自偷自拍另类 | 欧美日本精品一区二区三区 | 精品无码一区二区三区爱欲 | 欧美日韩亚洲国产精品 | 久久久精品国产sm最大网站 | 亚洲精品中文字幕乱码 | 欧美野外疯狂做受xxxx高潮 | 波多野结衣高清一区二区三区 | 日本欧美一区二区三区乱码 | 一个人看的www免费视频在线观看 | 欧美精品无码一区二区三区 | 日本精品人妻无码免费大全 | 久久久国产一区二区三区 | 国产乱人伦av在线无码 | 成人免费视频在线观看 | 丰满少妇女裸体bbw | 性欧美熟妇videofreesex | 97人妻精品一区二区三区 | 色综合久久久久综合一本到桃花网 | 亚洲成色在线综合网站 | 最新国产乱人伦偷精品免费网站 | 少妇高潮喷潮久久久影院 | 国产suv精品一区二区五 | 亚洲日韩乱码中文无码蜜桃臀网站 | 色一情一乱一伦一视频免费看 | 亚洲另类伦春色综合小说 | 无码乱肉视频免费大全合集 | 无码中文字幕色专区 | 国产精华av午夜在线观看 | 亚洲人成影院在线无码按摩店 | 精品国产麻豆免费人成网站 | 久久国内精品自在自线 | 成年女人永久免费看片 | 性开放的女人aaa片 | 人妻aⅴ无码一区二区三区 | 人妻与老人中文字幕 | 日韩精品一区二区av在线 | 久久久久久久久蜜桃 | 亚洲欧美国产精品久久 | 人妻aⅴ无码一区二区三区 | 国产精品va在线观看无码 | 成人免费视频视频在线观看 免费 | 久久综合狠狠综合久久综合88 | 日韩av无码一区二区三区 | 久久国内精品自在自线 | 欧美人与善在线com | 国产极品美女高潮无套在线观看 | 撕开奶罩揉吮奶头视频 | 久久久久se色偷偷亚洲精品av | 欧美丰满老熟妇xxxxx性 | 无码人妻av免费一区二区三区 | 麻豆果冻传媒2021精品传媒一区下载 | 在线亚洲高清揄拍自拍一品区 | 强辱丰满人妻hd中文字幕 | 欧美日韩在线亚洲综合国产人 | 国产美女精品一区二区三区 | 久久99国产综合精品 | 成人亚洲精品久久久久 | 欧美 日韩 亚洲 在线 | 人妻无码αv中文字幕久久琪琪布 | 久久99精品国产麻豆蜜芽 | 无码人妻精品一区二区三区不卡 | 久久精品99久久香蕉国产色戒 | 天天躁夜夜躁狠狠是什么心态 | 国产区女主播在线观看 | 亚洲国精产品一二二线 | 永久免费观看美女裸体的网站 | 给我免费的视频在线观看 | 国产无遮挡吃胸膜奶免费看 | 国产亚洲视频中文字幕97精品 | 久久99国产综合精品 | 久久国产精品萌白酱免费 | 欧美精品免费观看二区 | 国产精品视频免费播放 | 久久久无码中文字幕久... | 国产免费观看黄av片 | 99久久婷婷国产综合精品青草免费 | 麻豆国产人妻欲求不满 | ass日本丰满熟妇pics | 久久精品中文字幕大胸 | 四虎国产精品免费久久 | 欧美人与禽猛交狂配 | 麻豆果冻传媒2021精品传媒一区下载 | 成人片黄网站色大片免费观看 | 亚洲一区av无码专区在线观看 | 日韩人妻无码中文字幕视频 | 国产精品无码成人午夜电影 | 露脸叫床粗话东北少妇 | 亚洲国产精品美女久久久久 | 成人一在线视频日韩国产 | 成人试看120秒体验区 | www一区二区www免费 | 成人综合网亚洲伊人 | 又紧又大又爽精品一区二区 | 黑人大群体交免费视频 | 国产亚洲tv在线观看 | 无码一区二区三区在线 | 欧美成人家庭影院 | 四虎国产精品免费久久 | a国产一区二区免费入口 | 377p欧洲日本亚洲大胆 | 日韩欧美成人免费观看 | 麻豆国产丝袜白领秘书在线观看 | 亚洲成熟女人毛毛耸耸多 | 动漫av网站免费观看 | 性做久久久久久久久 | 5858s亚洲色大成网站www | 亚洲熟悉妇女xxx妇女av | 夜先锋av资源网站 | 搡女人真爽免费视频大全 | 在线精品国产一区二区三区 | 中文字幕 人妻熟女 | 精品国产aⅴ无码一区二区 | 精品国产青草久久久久福利 | 国产电影无码午夜在线播放 | 亲嘴扒胸摸屁股激烈网站 | 日日摸夜夜摸狠狠摸婷婷 | 蜜臀av无码人妻精品 | 一本久久a久久精品vr综合 | 国产乱子伦视频在线播放 | 日韩亚洲欧美中文高清在线 | 久在线观看福利视频 | 久久精品99久久香蕉国产色戒 | 午夜不卡av免费 一本久久a久久精品vr综合 | 久久精品99久久香蕉国产色戒 | 久久99精品久久久久婷婷 | 日日夜夜撸啊撸 | 精品一二三区久久aaa片 | 久激情内射婷内射蜜桃人妖 | 天堂亚洲免费视频 | 成熟人妻av无码专区 | 中文亚洲成a人片在线观看 | 亚洲欧美精品aaaaaa片 | 天堂无码人妻精品一区二区三区 | 最新国产乱人伦偷精品免费网站 | 亚洲精品国产精品乱码视色 | 无码国模国产在线观看 | 玩弄中年熟妇正在播放 | 中文字幕乱码人妻无码久久 | 亚洲成a人片在线观看日本 | 国产精品怡红院永久免费 | 久久亚洲国产成人精品性色 | 亚洲色欲色欲天天天www | 欧美精品国产综合久久 | 巨爆乳无码视频在线观看 | 免费国产成人高清在线观看网站 | 日韩视频 中文字幕 视频一区 | 久久久久亚洲精品男人的天堂 | 免费人成在线观看网站 | 亚洲a无码综合a国产av中文 | 无码吃奶揉捏奶头高潮视频 | 国产无遮挡又黄又爽免费视频 | 国产激情无码一区二区app | 日本精品高清一区二区 | 扒开双腿疯狂进出爽爽爽视频 | 狂野欧美激情性xxxx | 欧美 日韩 人妻 高清 中文 | 国产人妻精品一区二区三区不卡 | 欧美三级不卡在线观看 | 日本饥渴人妻欲求不满 | 欧美亚洲国产一区二区三区 | aa片在线观看视频在线播放 | 高潮毛片无遮挡高清免费视频 | 在线天堂新版最新版在线8 | 亚洲精品成人福利网站 | 精品偷拍一区二区三区在线看 | 99久久亚洲精品无码毛片 | 国产午夜福利100集发布 | 牲欲强的熟妇农村老妇女视频 | 99久久无码一区人妻 | 丁香啪啪综合成人亚洲 | 婷婷六月久久综合丁香 | 水蜜桃亚洲一二三四在线 | 偷窥村妇洗澡毛毛多 | 久久99精品久久久久久动态图 | 丰满诱人的人妻3 | 色一情一乱一伦 | 久精品国产欧美亚洲色aⅴ大片 | 国产精品久久久 | 又粗又大又硬毛片免费看 | 亚洲欧洲日本综合aⅴ在线 | 欧美成人午夜精品久久久 | 国产乡下妇女做爰 | 久久99精品久久久久婷婷 | 亚洲国产精品成人久久蜜臀 | 国产精品无码久久av | 久久熟妇人妻午夜寂寞影院 | 欧洲熟妇精品视频 | 国产精品亚洲一区二区三区喷水 | 久久久精品456亚洲影院 | 日日摸日日碰夜夜爽av | 精品 日韩 国产 欧美 视频 | 综合激情五月综合激情五月激情1 | 成人欧美一区二区三区黑人免费 | 97资源共享在线视频 | 少妇无码av无码专区在线观看 | 清纯唯美经典一区二区 | 欧美国产亚洲日韩在线二区 | 亚洲色欲色欲天天天www | 午夜福利一区二区三区在线观看 | 亚洲成色www久久网站 | 欧洲极品少妇 | 亚洲小说春色综合另类 | 丰满妇女强制高潮18xxxx | 国产人妖乱国产精品人妖 | 欧美人与动性行为视频 | 国产内射爽爽大片视频社区在线 | 欧美丰满熟妇xxxx性ppx人交 | 色爱情人网站 | 99精品视频在线观看免费 | 东京热一精品无码av | 永久免费精品精品永久-夜色 | 乱人伦人妻中文字幕无码 | 无码国模国产在线观看 | 欧美熟妇另类久久久久久多毛 | 亚洲一区二区三区无码久久 | 亚洲の无码国产の无码影院 | 久久久国产精品无码免费专区 | 亚洲成a人一区二区三区 | 美女扒开屁股让男人桶 | 伊人久久大香线蕉亚洲 | 特黄特色大片免费播放器图片 | 国产尤物精品视频 | 亚洲精品中文字幕久久久久 | 亚欧洲精品在线视频免费观看 | 国产凸凹视频一区二区 | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲日本va中文字幕 | 国产绳艺sm调教室论坛 | 思思久久99热只有频精品66 | 国产av剧情md精品麻豆 | 中文毛片无遮挡高清免费 | √天堂中文官网8在线 | 特级做a爰片毛片免费69 | 一本精品99久久精品77 | 人妻少妇精品视频专区 | 国产成人一区二区三区在线观看 | 日日麻批免费40分钟无码 | 少妇被黑人到高潮喷出白浆 | 国产一区二区不卡老阿姨 | 啦啦啦www在线观看免费视频 | 成熟女人特级毛片www免费 | 久久精品女人天堂av免费观看 | 欧美性猛交xxxx富婆 | 国内精品久久久久久中文字幕 | 少妇激情av一区二区 | 亚洲中文字幕va福利 | 久久99精品国产麻豆蜜芽 | 色偷偷人人澡人人爽人人模 | 色综合久久久久综合一本到桃花网 | 99riav国产精品视频 | 999久久久国产精品消防器材 | 人人爽人人爽人人片av亚洲 | 亚洲欧美日韩成人高清在线一区 | 国产人妖乱国产精品人妖 | 久久午夜夜伦鲁鲁片无码免费 | 久久99精品国产.久久久久 | 国产色视频一区二区三区 | 日日躁夜夜躁狠狠躁 | 亚洲精品成人av在线 | 少妇一晚三次一区二区三区 | 日本xxxx色视频在线观看免费 | 午夜精品久久久内射近拍高清 | 爱做久久久久久 | 久久国语露脸国产精品电影 | 国产特级毛片aaaaaa高潮流水 | 红桃av一区二区三区在线无码av | 小鲜肉自慰网站xnxx | 日日摸天天摸爽爽狠狠97 | 野外少妇愉情中文字幕 | 天天爽夜夜爽夜夜爽 | 在线播放无码字幕亚洲 | 欧美丰满老熟妇xxxxx性 | 大肉大捧一进一出视频出来呀 | 中文毛片无遮挡高清免费 | 国产情侣作爱视频免费观看 | 丝袜 中出 制服 人妻 美腿 | 精品熟女少妇av免费观看 | 黑人粗大猛烈进出高潮视频 | 欧美国产日产一区二区 | 国产精品久久久久久无码 | 国产成人综合在线女婷五月99播放 | 亚洲国产精品久久人人爱 | 亚洲精品久久久久久一区二区 | 亚洲色偷偷偷综合网 | 人妻互换免费中文字幕 | 老子影院午夜精品无码 | 在线播放亚洲第一字幕 | 蜜桃视频韩日免费播放 | 欧美三级不卡在线观看 | 18禁黄网站男男禁片免费观看 | 欧美猛少妇色xxxxx | 亚洲一区二区三区国产精华液 | 久久精品中文字幕一区 | 精品国产aⅴ无码一区二区 | 少妇性荡欲午夜性开放视频剧场 | 久久久av男人的天堂 | 中文精品无码中文字幕无码专区 | 99久久人妻精品免费一区 | 国产做国产爱免费视频 | 久久精品成人欧美大片 | 亚洲国产综合无码一区 | 国产sm调教视频在线观看 | 夜夜影院未满十八勿进 | 久久久av男人的天堂 | 久久精品人人做人人综合 | 国内精品九九久久久精品 | 中文字幕久久久久人妻 | 国产艳妇av在线观看果冻传媒 | 玩弄少妇高潮ⅹxxxyw | 欧美激情内射喷水高潮 | 欧洲精品码一区二区三区免费看 | 在线а√天堂中文官网 | 亚洲欧美日韩成人高清在线一区 | 未满小14洗澡无码视频网站 | 中文字幕无码日韩专区 | 国产精品无码永久免费888 | 亚洲国产精品久久久久久 | 国产9 9在线 | 中文 | 色综合久久88色综合天天 | 国产精品二区一区二区aⅴ污介绍 | 四虎影视成人永久免费观看视频 | 欧美性色19p | 台湾无码一区二区 | 久久久久se色偷偷亚洲精品av | 亚洲大尺度无码无码专区 | 自拍偷自拍亚洲精品被多人伦好爽 | 天堂无码人妻精品一区二区三区 | 亚洲爆乳精品无码一区二区三区 | 激情国产av做激情国产爱 | 无码国产乱人伦偷精品视频 | 青青青爽视频在线观看 | 成人无码精品1区2区3区免费看 | 精品一二三区久久aaa片 | 中文亚洲成a人片在线观看 | a在线观看免费网站大全 | 最新版天堂资源中文官网 | 亚洲理论电影在线观看 | 老司机亚洲精品影院 | 色情久久久av熟女人妻网站 | 久久久国产精品无码免费专区 | 狠狠色噜噜狠狠狠7777奇米 | 久久精品国产一区二区三区 | 人妻夜夜爽天天爽三区 | 荡女精品导航 | 成人精品天堂一区二区三区 | 捆绑白丝粉色jk震动捧喷白浆 | 日日天日日夜日日摸 | 天天做天天爱天天爽综合网 | 国产成人无码a区在线观看视频app | 精品国偷自产在线 | 国产黑色丝袜在线播放 | aⅴ在线视频男人的天堂 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 国产手机在线αⅴ片无码观看 | 1000部夫妻午夜免费 | 麻豆国产人妻欲求不满 | 特级做a爰片毛片免费69 | 国产无套内射久久久国产 | 日韩少妇内射免费播放 | 亚洲国产成人av在线观看 | 内射白嫩少妇超碰 | 久久国产精品偷任你爽任你 | 永久黄网站色视频免费直播 | 丝袜美腿亚洲一区二区 | 丰满少妇熟乱xxxxx视频 | 中文无码精品a∨在线观看不卡 | 欧美成人家庭影院 | 人妻体内射精一区二区三四 | 人妻天天爽夜夜爽一区二区 | 久久久久久a亚洲欧洲av冫 | 帮老师解开蕾丝奶罩吸乳网站 | 一二三四在线观看免费视频 | 国产精品高潮呻吟av久久 | 纯爱无遮挡h肉动漫在线播放 | 亚洲一区二区三区播放 | 中文无码成人免费视频在线观看 | 亚洲精品无码人妻无码 | 国产精品办公室沙发 | 欧美性黑人极品hd | 亚洲熟悉妇女xxx妇女av | 国产人妖乱国产精品人妖 | 狠狠cao日日穞夜夜穞av | 樱花草在线播放免费中文 | 精品久久8x国产免费观看 | 国产性生大片免费观看性 | 人妻少妇精品久久 | 鲁鲁鲁爽爽爽在线视频观看 | 亚洲狠狠色丁香婷婷综合 | 无码av最新清无码专区吞精 | 亚洲成a人片在线观看无码3d | 无码人妻丰满熟妇区五十路百度 | 欧美日韩人成综合在线播放 | 一本色道久久综合狠狠躁 | 国产成人无码av片在线观看不卡 | 男女爱爱好爽视频免费看 | 伊人久久大香线蕉av一区二区 | av人摸人人人澡人人超碰下载 | 亚洲一区二区观看播放 | 国内揄拍国内精品少妇国语 | 国产精品久久久久久久9999 | 欧美日韩视频无码一区二区三 | 国产av无码专区亚洲a∨毛片 | 成人免费视频视频在线观看 免费 | 欧美人与善在线com | 国产另类ts人妖一区二区 | 天天拍夜夜添久久精品大 | 成人影院yy111111在线观看 | 日日碰狠狠丁香久燥 | 亚洲区小说区激情区图片区 | 无码福利日韩神码福利片 | 亚洲区欧美区综合区自拍区 | 又大又硬又爽免费视频 | 帮老师解开蕾丝奶罩吸乳网站 | 日韩亚洲欧美中文高清在线 | 午夜丰满少妇性开放视频 | 在线 国产 欧美 亚洲 天堂 | 学生妹亚洲一区二区 | 亚洲 高清 成人 动漫 | 熟妇人妻无乱码中文字幕 | 成人欧美一区二区三区黑人免费 | 奇米影视888欧美在线观看 | 久久国语露脸国产精品电影 | 久久久中文久久久无码 | 国产精品人妻一区二区三区四 | 欧美人与牲动交xxxx | 小鲜肉自慰网站xnxx | 精品国产精品久久一区免费式 | av香港经典三级级 在线 | 亚洲精品国产品国语在线观看 | 亚洲 高清 成人 动漫 | 内射老妇bbwx0c0ck | 欧美zoozzooz性欧美 | 久久久久成人精品免费播放动漫 | 成人片黄网站色大片免费观看 | 欧洲极品少妇 | 少妇高潮一区二区三区99 | 东京热无码av男人的天堂 | 欧美乱妇无乱码大黄a片 | 无码一区二区三区在线观看 | 久久久精品456亚洲影院 | 人人妻人人澡人人爽欧美一区九九 | 国产一区二区三区四区五区加勒比 | 久久精品人人做人人综合 | 日本精品人妻无码77777 天堂一区人妻无码 | 精品欧洲av无码一区二区三区 | 98国产精品综合一区二区三区 | 99久久亚洲精品无码毛片 | 在线精品亚洲一区二区 | 大肉大捧一进一出视频出来呀 | 国产黄在线观看免费观看不卡 | 内射爽无广熟女亚洲 | 蜜桃视频插满18在线观看 | 久久人人爽人人爽人人片av高清 | 亚洲七七久久桃花影院 | 伊人久久大香线蕉av一区二区 | 人妻中文无码久热丝袜 | 日本肉体xxxx裸交 | 丰满岳乱妇在线观看中字无码 | 国产精品18久久久久久麻辣 | 色 综合 欧美 亚洲 国产 | 国产精品久久国产精品99 | 少妇性俱乐部纵欲狂欢电影 | 荫蒂被男人添的好舒服爽免费视频 | 亚洲日韩一区二区 | 欧美日本精品一区二区三区 | 在线精品国产一区二区三区 | 无码纯肉视频在线观看 | 熟女少妇在线视频播放 | 国产三级久久久精品麻豆三级 | 兔费看少妇性l交大片免费 | 少妇邻居内射在线 | 欧美喷潮久久久xxxxx | 日韩精品一区二区av在线 | 麻豆蜜桃av蜜臀av色欲av | 久久人人97超碰a片精品 | 日本一卡二卡不卡视频查询 | 欧美 丝袜 自拍 制服 另类 | 久久亚洲国产成人精品性色 | 无码人妻av免费一区二区三区 | 日韩亚洲欧美中文高清在线 | 正在播放老肥熟妇露脸 | 男女性色大片免费网站 | 亚洲a无码综合a国产av中文 | 人妻天天爽夜夜爽一区二区 | 国产成人精品必看 | 四虎4hu永久免费 | 欧美人与牲动交xxxx | 亚洲人成人无码网www国产 | 无码纯肉视频在线观看 | 白嫩日本少妇做爰 | 色综合久久久久综合一本到桃花网 | 欧美日韩一区二区综合 | 精品国产av色一区二区深夜久久 | 波多野结衣一区二区三区av免费 | 好男人www社区 | 久久人人爽人人人人片 | 天下第一社区视频www日本 | 夫妻免费无码v看片 | 日本精品久久久久中文字幕 | 久久五月精品中文字幕 | 麻豆md0077饥渴少妇 | 帮老师解开蕾丝奶罩吸乳网站 | 国产精品久久福利网站 | 高潮喷水的毛片 | 国产精品国产自线拍免费软件 | 人人妻人人澡人人爽欧美一区九九 | 精品偷拍一区二区三区在线看 | 亚洲精品成人福利网站 | 玩弄中年熟妇正在播放 | 狂野欧美性猛交免费视频 | 无码人妻丰满熟妇区毛片18 | 国产在线精品一区二区三区直播 | 天天拍夜夜添久久精品大 | 亚洲国产精品一区二区第一页 | 久久精品人妻少妇一区二区三区 | 一本一道久久综合久久 | 日本精品久久久久中文字幕 | 久久综合狠狠综合久久综合88 | 啦啦啦www在线观看免费视频 | 亚洲s色大片在线观看 | 国产亚洲人成a在线v网站 | 久久无码中文字幕免费影院蜜桃 | 欧美xxxxx精品 | 啦啦啦www在线观看免费视频 | 全球成人中文在线 | 国产无遮挡又黄又爽又色 | 伊在人天堂亚洲香蕉精品区 | 色欲av亚洲一区无码少妇 | 波多野结衣乳巨码无在线观看 | 国产美女精品一区二区三区 | 国产精品久久国产精品99 | 亚洲精品国偷拍自产在线观看蜜桃 | 久久精品女人的天堂av | 久久无码人妻影院 | 国产国语老龄妇女a片 | 国产人妖乱国产精品人妖 | 亚洲精品综合五月久久小说 | 国产精品二区一区二区aⅴ污介绍 | 狠狠色噜噜狠狠狠狠7777米奇 | 老子影院午夜伦不卡 | 高清无码午夜福利视频 | 六月丁香婷婷色狠狠久久 | 夜先锋av资源网站 | 亚洲欧美国产精品专区久久 | 99精品无人区乱码1区2区3区 | 乱人伦中文视频在线观看 | 国产免费久久精品国产传媒 | 日本丰满熟妇videos | 婷婷丁香五月天综合东京热 | 欧美自拍另类欧美综合图片区 | 欧美亚洲日韩国产人成在线播放 | 亚洲精品国产第一综合99久久 | 国产精品久久久久久亚洲影视内衣 | 国产亚洲美女精品久久久2020 | 最近免费中文字幕中文高清百度 | 日日碰狠狠躁久久躁蜜桃 | 亚洲 a v无 码免 费 成 人 a v | 久久国产劲爆∧v内射 | 在线成人www免费观看视频 | 亚洲自偷自偷在线制服 | 老太婆性杂交欧美肥老太 | 少妇一晚三次一区二区三区 | 欧美肥老太牲交大战 | 免费网站看v片在线18禁无码 | 亚洲熟妇色xxxxx欧美老妇 | 日本又色又爽又黄的a片18禁 | 无码一区二区三区在线观看 | 久久熟妇人妻午夜寂寞影院 | 野外少妇愉情中文字幕 | 天天av天天av天天透 | 狠狠噜狠狠狠狠丁香五月 | 曰韩无码二三区中文字幕 | 国产美女极度色诱视频www | 欧洲欧美人成视频在线 | 久久亚洲国产成人精品性色 | 欧美 日韩 亚洲 在线 | 亚洲欧美国产精品专区久久 | 狂野欧美性猛交免费视频 | 国产精品视频免费播放 | 亚洲中文字幕久久无码 | 人人妻人人澡人人爽人人精品浪潮 | 亚洲成av人在线观看网址 | 国产精品爱久久久久久久 | 天天摸天天碰天天添 | 国产亚洲精品久久久闺蜜 | 亚洲国产欧美日韩精品一区二区三区 | 377p欧洲日本亚洲大胆 | 日本www一道久久久免费榴莲 | 日韩精品一区二区av在线 | 欧美第一黄网免费网站 | 99久久99久久免费精品蜜桃 | 久久99国产综合精品 | 成人无码影片精品久久久 | 亚洲s码欧洲m码国产av | 草草网站影院白丝内射 | 97精品人妻一区二区三区香蕉 | 色综合久久久久综合一本到桃花网 | 国内精品久久久久久中文字幕 | а天堂中文在线官网 | 国产 浪潮av性色四虎 | 亚洲伊人久久精品影院 | 无码人妻少妇伦在线电影 | 99久久人妻精品免费一区 | 国产熟女一区二区三区四区五区 | 久久亚洲国产成人精品性色 | 三上悠亚人妻中文字幕在线 | 久久久久se色偷偷亚洲精品av | 国产电影无码午夜在线播放 | 精品亚洲韩国一区二区三区 | 欧美国产亚洲日韩在线二区 | 亚洲成色www久久网站 | 欧美激情综合亚洲一二区 | 中文字幕无码免费久久9一区9 | 日韩无码专区 | 亚洲理论电影在线观看 | 亚洲中文字幕无码中文字在线 | 人人爽人人澡人人高潮 | 鲁大师影院在线观看 | 人妻插b视频一区二区三区 | 3d动漫精品啪啪一区二区中 | 理论片87福利理论电影 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 国产艳妇av在线观看果冻传媒 | 在线成人www免费观看视频 | 国产午夜无码视频在线观看 | 无码国模国产在线观看 | 婷婷五月综合激情中文字幕 | 日本高清一区免费中文视频 | 大屁股大乳丰满人妻 | 精品无码av一区二区三区 | 国产 精品 自在自线 | 欧美人与动性行为视频 | 精品无码成人片一区二区98 | 丰满诱人的人妻3 | 国产成人无码一二三区视频 | 色一情一乱一伦一区二区三欧美 | www成人国产高清内射 | 性色av无码免费一区二区三区 | 国产特级毛片aaaaaaa高清 | 欧美 丝袜 自拍 制服 另类 | 免费观看的无遮挡av | 精品国产一区二区三区四区 | 自拍偷自拍亚洲精品10p | 欧美猛少妇色xxxxx | 精品成人av一区二区三区 | 国产农村妇女aaaaa视频 撕开奶罩揉吮奶头视频 | 色婷婷久久一区二区三区麻豆 | 久久zyz资源站无码中文动漫 | 亚洲午夜无码久久 | 无码毛片视频一区二区本码 | 亚洲精品久久久久avwww潮水 | 亚洲精品成a人在线观看 | 日日摸日日碰夜夜爽av | 国产精品-区区久久久狼 | 亚洲国产精品久久人人爱 | av无码不卡在线观看免费 | 国产福利视频一区二区 | 国产人妻人伦精品 | 欧美人与物videos另类 | 久久久久国色av免费观看性色 | 精品欧洲av无码一区二区三区 | 国产午夜亚洲精品不卡 | 午夜精品久久久久久久 | 国产精品丝袜黑色高跟鞋 | 人妻aⅴ无码一区二区三区 | 午夜男女很黄的视频 | 国产av一区二区精品久久凹凸 | 亚洲欧洲日本无在线码 | 小泽玛莉亚一区二区视频在线 | 免费国产成人高清在线观看网站 | 国产麻豆精品一区二区三区v视界 | 国产国产精品人在线视 | aⅴ在线视频男人的天堂 | 1000部夫妻午夜免费 | 国产精华av午夜在线观看 | 欧美喷潮久久久xxxxx | 国产人妻久久精品二区三区老狼 | 四虎国产精品免费久久 | 国产精品久久久久9999小说 | 在线观看欧美一区二区三区 | 国产成人精品久久亚洲高清不卡 | 妺妺窝人体色www婷婷 | 国产农村妇女高潮大叫 | 久激情内射婷内射蜜桃人妖 | 日韩av无码中文无码电影 | 国产激情无码一区二区 | 亚洲熟悉妇女xxx妇女av | 未满成年国产在线观看 | 日本精品少妇一区二区三区 | 亚洲 另类 在线 欧美 制服 |