THESEUS-FE | 飞机客舱热舒适性分析与优化
The main task of?Thermal comfort and the well-being of passengers in aircraft cabin are import criteria for airlines to purchase a specific aircraft.
機艙熱舒適性與乘客的溫度體驗已成為航空公司在購買飛機時著重考量的要素。
The thermal comfort of passengers in particular is influenced by the air flow, the temperature distribution and the thermal radiation in a specific cabin confi-guration. The thermal comfort prediction in an aircraft cabin further depends on the numerous thermal sources, one of which is the passenger- itself.?
乘客的熱舒適感受尤其受機艙內的風量、溫度分布與熱輻射分布所影響。機艙熱舒適性預期還會受到機艙內其他熱源的直接影響,例如乘客自身產生的熱量。
飛機環境控制系統(ECS)
The main task of the environmental control system (ECS) of an aircraft is to provide air supply, thermal control and cabin pressurization for the crew and passengers. An amount of 0.55 lb/min of fresh air has to be supplied for each passenger within the following bounds:
飛機環境控制系統(ECS)的主要任務是為機組人員與乘客提供足量空氣,熱控制和客艙壓力。每位乘客需要0.55磅/分鐘的新鮮空氣供應,其要求數據如下:
-
Proper level of oxygen
適當的氧氣水平
-
A moisture level of 7-15 %?
濕度范圍為7-15%
-
Temperature in the range 21-25 °C?
溫度范圍為21-25?°C
-
A pressure level of approx. 750 hPa?? ? ? ? ? ? ? ?
壓力水平約為750hPa
The desired cabin pressure is regulated by controlled draining of stale air. Recirculation air and fresh air are mixed in roughly equal proportions.
通過控制排出污濁空氣來調節客艙所需的合理壓力。內循環空氣和新鮮空氣以大致相等的比例混合。
For the normal flight operation, cabin temperature is regulated to 21-25 °C. For cooling down an airplane while on the ground on a hot sunny day, one estimates the necessary cooling power to about 150-200 W per passenger. For a large capacity aircraft with 350 passengers this leads to a required cooling capacity of over 50 kW.
在正常的飛行過程中,機艙溫度會被調節到21-25°C。當遭遇炎熱的天氣時,則需要為客艙降溫,估計每位乘客消耗的冷卻功率約為150-200W。對于一架載客量為350人的大型飛機而言,其所需的冷卻功率將超過50kW。
不同海拔高度的環境空氣溫度范圍?
When putting the ECS system into operation, its efficiency is demonstrated with dynamic load cases:
在ECS系統運行時,其冷卻效率由動態載荷工況獲得:
-
Typical summer load case: cooling down from 40-24 °C?
典型的夏季工況:從40°C冷卻到24°C
-
Typical winter load case: heating up from -25-21 °C
典型的冬季工況:從-25°C升溫到21°C
The cabin target temperature has to be reached within 30 minutes. The process of heating up during the winter load case demands for up to 70°C fresh air temperature. The portion of needed fuel for the environmental control system compared to the total fuel consumption is approximately 5%.
客艙的目標溫度必須在30分鐘內達到。在冬季升溫工況下,外循環新鮮空氣的溫度需要達到70°C。環境控制系統所需的燃料占比約為總燃料消耗的5%。
飛機客艙不同出風口方案設計?
For the summer load case, about 25% of the ECS power is used for dehumidification of the air. Nowadays for that purpose high-pressure water separators are used. They utilize that fact that air at high pressure absorbs less water than at normal pressure levels.
在夏季工況下,大約25% 的環境控制系統功率用于空氣除濕。現在我們使用高壓水分離器來實現這個目的。其原理為空氣在高壓下比在正常壓力下吸收更少的水分。
?飛機客艙熱舒適性
At any time within an aircraft cabin a suitable temperature has to be set. This depends for example on the typical clothing of the passengers, e.g. is it summer or winter. Furthermore, it can depend on the activity level of the passengers - are they awake or sleeping.
飛機客艙內任何時間都必須設定合適的溫度。這取決于乘客的著裝情況,冬季或夏季;也取決于乘客的行為活動,清醒或熟睡。
Reasons for local discomfort can be:
造成身體局部不舒適的原因可能是:
-
Intense air flow in the head or neck region
頭部或頸部區域的強烈氣流
-
Cold feet
腳冷
-
Incident solar radiation at the window seats?
靠窗座位的太陽輻射
-
Sweating due to contact with the seat, especially on longer flights
因與座椅接觸而出汗,特別是長途飛行時
機外殼和乘客的日曬負荷?
When designing the cabin ventilation system, in general asymmetric and inhomogeneous thermal conditions should be avoided.?
在設計客艙通風系統時,應盡量避免不對稱和不均勻的熱條件。
To compare local comfort indices of passengers, it is appropriate to do thermal simulations using the thermophysiological human model of THESEUS?FE coupled with fine-grained CFD simulations. Different variants of climatization concepts can be analyzed easily this way without the need for cost-intensive prototypes.
為了比較乘客的局部舒適度指數,可以運用THESEUS?FE的熱生理人體模型結合高精細度的CFD模型進行熱模擬仿真。通過這種方式可輕松進行不同環境條件下的方案分析,且不需要使用成本高昂的試制原型。
豪華飛機客艙與乘客模型在THESEUS?FE GUI中的展示?
案例研究:Airbus A320與Do728
Results of a numerical study of the air flow and the thermal comfort of the passengers in an aircraft cabin which includes thermal radiation effects are presented.
本案例展現了在熱輻射影響下的客艙空氣流通與乘客熱舒適性的模擬研究結果。
The computations have been performed by coupling flow simulations with the Computational Fluid?Dynamics (CFD) code OpenFOAM with finite element simulations of the heat transport within the passengers using the code THESEUS-FE.
這些計算是通過使用計算流體動力學(CFD)的代碼OpenFOAM進行流動模擬與使用代碼THESEUS-FE對乘客內部的熱傳遞進行有限元模擬的耦合來完成的。
OpenFOAM與THESEUS-FE瞬時CFD計算
With the latter the bodies of passengers are modeled based on various layers with different heat transport characteristics to account the effects like blood flow, skin, clothing as well as activity levels and ambient humidity.
THESEUS-FE 軟件內含基于人體生理學構造的模型,考慮了人體不同層的傳熱特性和影響,例如血流、皮膚、衣物、活動水平與環境濕度。
Do728 客艙試驗與模擬溫度對比?
Computations of the flow, thermal radiation and of the modeled passenger comfort in the cabin of the Airbus A320 and Do728 are discussed. The predicted numerical temperature distributions in the cabin of Do728 have been supported by experimental measurements with generally good consistency.
本次的飛機研究型號為Airbus A320與Do728,計算數據涵蓋氣體流動、熱輻射與客艙乘員模型。Do728模擬客艙溫度數值分布已經由試驗測量確認(如上圖所示),且數據結果擬合度高。
注:本案例為THESEUS-FE與DLR的合作項目,更多技術內容請查看下方THESEUS-FE官網。
https://www.theseus-fe.com/zh/zh-application-areas/zh-aerospace
關于埃爾科
ARRK Engineering GmbH 原名 P+Z Engineering GmbH,成立于1967年,總部位于德國慕尼黑,在英國、羅馬尼亞、日本和中國均設有分公司或辦公室,是汽車及航空航天等行業內眾多國際一線品牌的長期合作伙伴,為客戶提供高端的工程開發咨詢服務。
埃爾科工程技術開發(上海)有限公司 是德國 ARRK Engineering GmbH 在中國設立的全資子公司,成立于2019年9月,志為中國汽車領域提供世界一流的工程技術服務。
————————————————
版權聲明:本文為CSDN博主「ARRK_Engineering」的原創文章,遵循CC 4.0 BY-SA版權協議,轉載請附上原文出處鏈接及本聲明。
原文鏈接:https://blog.csdn.net/ARRK_Engineering/article/details/125844152
總結
以上是生活随笔為你收集整理的THESEUS-FE | 飞机客舱热舒适性分析与优化的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: ACCP3.0和ACCP4.0
- 下一篇: 如何在编译内核时添加缺少的固件(以int