【SDE】随机微分方程(1)
導航
- Source of Randomness And Ito SDE
- SDE解的存在性和唯一性
- 等價SDE
- 參考資料
Source of Randomness And Ito SDE
考慮如下常微分方程
{dX(t)=a(t,X(t))dtX(0)=x0\begin{cases} dX(t)=a(t, X(t))dt\\ X(0)=x_0 \end{cases} {dX(t)=a(t,X(t))dtX(0)=x0??
隨機性來源分析
(1) 初值隨機化
{dXt=a(t,Xt)dtX0(w)=Y(w)\begin{cases} dX_t=a(t, X_t)dt\\ X_0(w)=Y(w) \end{cases} {dXt?=a(t,Xt?)dtX0?(w)=Y(w)?
(2) 隨機噪聲
dXt=a(t,Xt)dt+b(t,Xt)dBtdX_t=a(t, X_t)dt+b(t, X_t)dB_t dXt?=a(t,Xt?)dt+b(t,Xt?)dBt?
兩邊積分可以得到Ito-SDE
Xt=X0+∫0ta(s,Xs)ds?Riemann.Integral+∫0tb(s,Xs)dBs?Ito.IntegralX_t=X_0+\underbrace{\int_0^ta(s, X_s)ds}_{Riemann. Integral}+\underbrace{\int_0^tb(s, X_s)dB_s}_{Ito. Integral} Xt?=X0?+Riemann.Integral∫0t?a(s,Xs?)ds??+Ito.Integral∫0t?b(s,Xs?)dBs???
SDE解的存在性和唯一性
Strong Solution
(1) XtX_tXt? is adapted BtB_tBt? i.e. XtX_tXt? is a function of Bs,s≤tB_s, s\leq tBs?,s≤t.
(2) 以下兩個積分是well defined
∫0ta(s,Xs)ds∫0tb(s,Xs)dBs\int_0^t a(s, X_s)ds\\ \int_0^tb(s, X_s)dB_s ∫0t?a(s,Xs?)ds∫0t?b(s,Xs?)dBs?
(3) XXX is a function of the underlying sample path and of a(t,x)a(t, x)a(t,x) and b(t,x)b(t, x)b(t,x).
定理(強解存在唯一性):
設初值為X0X_0X0?,滿足以下兩個條件:
1.E[X02]<∞\mathbb{E}[X_0^2]<\inftyE[X02?]<∞.
2.X0X_0X0?與BtB_tBt?相互獨立,對于任意的x,y∈Rx, y \in \mathbb{R}x,y∈R有
a(t,x),b(t,x)a(t, x), b(t, x)a(t,x),b(t,x)是連續的.
∣a(t,x)?a(t,y)∣+∣b(t,x)?b(t,y)∣≤K∣x?y∣,?K∈[0,T]|a(t, x)-a(t, y)|+|b(t, x)-b(t, y)|\leq K|x-y|, \exist K \in [0, T]∣a(t,x)?a(t,y)∣+∣b(t,x)?b(t,y)∣≤K∣x?y∣,?K∈[0,T]. (Lipschitz Condition)
那么Ito-SDE有唯一的強解Xt∈[0,T]X_t \in [0, T]Xt?∈[0,T].
例:
線性SDE
Xt=X0+∫0t(c1Xs+c2)ds+∫0t(σ1Xs+σ2)dBsX_t=X_0+\int_0^t(c_1X_s+c_2)ds+\int_0^t(\sigma_1X_s+\sigma_2)dB_s Xt?=X0?+∫0t?(c1?Xs?+c2?)ds+∫0t?(σ1?Xs?+σ2?)dBs?
其中
a(t,x)=c1x+c2b(t,x)=σ1x+σ2a(t, x)=c_1x+c_2\\ b(t, x)=\sigma_1x+\sigma_2 a(t,x)=c1?x+c2?b(t,x)=σ1?x+σ2?
驗證Lipschitz條件
∣a(t,x)?a(t,y)∣+∣b(t,x)?b(t,y)∣=∣c1∣∣x?y∣+∣σ1∣∣x?y∣≤K∣x?y∣K≥∣c1∣+∣σ1∣|a(t, x)-a(t, y)|+|b(t, x)-b(t, y)|=|c_1||x-y|+|\sigma_1||x-y|\leq K|x-y|\\ K\geq |c_1|+|\sigma_1| ∣a(t,x)?a(t,y)∣+∣b(t,x)?b(t,y)∣=∣c1?∣∣x?y∣+∣σ1?∣∣x?y∣≤K∣x?y∣K≥∣c1?∣+∣σ1?∣
等價SDE
轉換定理(Transformation Formula):假設Ito-SDE
dXt=a(t,Xt)dt+b(t,Xt)dBtdX_t=a(t, X_t)dt+b(t, X_t)dB_t dXt?=a(t,Xt?)dt+b(t,Xt?)dBt?
將Ito積分轉為Stratonovich積分
∫0Tf(t,Xt)°dBt=∫0Tf(t,Xt)dBt+12∫0Tb(t,Xt)fx(t,Xt)dt\int_0^Tf(t, X_t)\circ dB_t=\int_0^Tf(t, X_t)dB_t+\frac{1}{2}\int_0^Tb(t, X_t)f_x(t, X_t)dt ∫0T?f(t,Xt?)°dBt?=∫0T?f(t,Xt?)dBt?+21?∫0T?b(t,Xt?)fx?(t,Xt?)dt
例 1:
設Ito-SDE
dXt=a(t,Xt)dt+b(t,Xt)dBt(1)dX_t=a(t, X_t)dt+b(t, X_t)dB_t \tag{1} dXt?=a(t,Xt?)dt+b(t,Xt?)dBt?(1)
轉為Stratonovich-SDE
dXt=a~(t,Xt)dt+b~(t,Xt)°dBt(2)dX_t=\widetilde{a}(t, X_t)dt+\widetilde{b}(t, X_t)\circ dB_t \tag{2} dXt?=a(t,Xt?)dt+b(t,Xt?)°dBt?(2)
根據轉換定理:
∫0Tf(t,Xt)°dBt=∫0Tf(t,Xt)dBt+12∫0Tb(t,Xt)fx(t,Xt)dt\int_0^Tf(t, X_t)\circ dB_t=\int_0^Tf(t, X_t)dB_t+\frac{1}{2}\int_0^Tb(t, X_t)f_x(t, X_t)dt ∫0T?f(t,Xt?)°dBt?=∫0T?f(t,Xt?)dBt?+21?∫0T?b(t,Xt?)fx?(t,Xt?)dt
不妨令f(t,Xt)=b(t,Xt)f(t, X_t)=b(t, X_t)f(t,Xt?)=b(t,Xt?),可以得到
b(t,Xt)°dBt=b(t,Xt)dBt+12b(t,Xt)bx(t,Xt)dtb(t, X_t)\circ dB_t=b(t, X_t)dB_t+\frac{1}{2}b(t, X_t)b_x(t, X_t)dt b(t,Xt?)°dBt?=b(t,Xt?)dBt?+21?b(t,Xt?)bx?(t,Xt?)dt
代入Ito-SDE形式
dXt=a(t,Xt)dt+b(t,Xt)dBt=a(t,Xt)dt+b(t,Xt)°dBt?12b(t,Xt)bx(t,Xt)dt=(a(t,Xt)?12b(t,Xt)bx(t,Xt))?a~dt+b(t,Xt)?b~°dBt\begin{aligned} dX_t&=a(t, X_t)dt+b(t, X_t)dB_t \\ &=a(t, X_t)dt+b(t, X_t)\circ dB_t-\frac{1}{2}b(t, X_t)b_x(t, X_t)dt\\ &=\underbrace{(a(t, X_t)-\frac{1}{2}b(t, X_t)b_x(t, X_t))}_{\widetilde{a}}dt+\underbrace{b(t, X_t)}_{\widetilde{b}}\circ dB_t \end{aligned} dXt??=a(t,Xt?)dt+b(t,Xt?)dBt?=a(t,Xt?)dt+b(t,Xt?)°dBt??21?b(t,Xt?)bx?(t,Xt?)dt=a(a(t,Xt?)?21?b(t,Xt?)bx?(t,Xt?))??dt+bb(t,Xt?)??°dBt??
可以得到
{a~=a(t,Xt)?12b(t,Xt)bx(t,Xt)b~=b(t,Xt)\begin{cases} \widetilde{a}=a(t, X_t)-\frac{1}{2}b(t, X_t)b_x(t, X_t)\\ \widetilde{b}=b(t, X_t) \end{cases} {a=a(t,Xt?)?21?b(t,Xt?)bx?(t,Xt?)b=b(t,Xt?)?
方程(1)(1)(1)和(2)(2)(2)是等價SDE.
例 2:
Ito-SDE
dXt=12f(Xt)f′(Xt)dt+f(Xt)dBtdX_t=\frac{1}{2}f(X_t)f'(X_t)dt+f(X_t)dB_t dXt?=21?f(Xt?)f′(Xt?)dt+f(Xt?)dBt?
可知
{a(t,x)=12f(Xt)f′(Xt)b(t,x)=f(Xt)\begin{cases} a(t, x)=\frac{1}{2}f(X_t)f'(X_t)\\ b(t, x)=f(X_t) \end{cases} {a(t,x)=21?f(Xt?)f′(Xt?)b(t,x)=f(Xt?)?
根據轉換定理轉為Stratonovich-SDE
{a~(t,x)=0b~(t,x)=f(Xt)\begin{cases} \widetilde{a}(t, x)=0\\ \widetilde{b}(t, x)=f(X_t) \end{cases} {a(t,x)=0b(t,x)=f(Xt?)?
等價SDE為
dXt=f(Xt)°dBtdX_t=f(X_t)\circ dB_t dXt?=f(Xt?)°dBt?
求解analogue:
dk(t)=f(k(t))dc(t)dk(t)=f(k(t))dc(t) dk(t)=f(k(t))dc(t)
移項得到
∫dl(t)f(l(t))=dc(t)\int \frac{dl(t)}{f(l(t))}=dc(t) ∫f(l(t))dl(t)?=dc(t)
例 3:
dXt=12nXt2n?1dt+XtndBtdX_t=\frac{1}{2}nX_t^{2n-1}dt+X_t^ndB_t dXt?=21?nXt2n?1?dt+Xtn?dBt?
轉為等價SDE
dXt=f(Xt)°dBt=Xtn°dBtdX_t=f(X_t)\circ dB_t=X_t^n\circ dB_t dXt?=f(Xt?)°dBt?=Xtn?°dBt?
令k(t)=Xt,c(t)=Btk(t)=X_t, c(t)=B_tk(t)=Xt?,c(t)=Bt?,得到analogue-ODE:
dk(t)=k(t)ndc(t)dk(t)=k(t)^ndc(t) dk(t)=k(t)ndc(t)
在區間[0,t][0, t][0,t]上解之得
∫l(0)l(t)1k(t)ndk(t)=c(t)?c(0)11?n[k(t)]1?n?11?n[k(0)]1?n=c(t)?c(0)\int_{l(0)}^{l(t)}\frac{1}{k(t)^n}dk(t)=c(t)-c(0)\\ \frac{1}{1-n}[k(t)]^{1-n}-\frac{1}{1-n}[k(0)]^{1-n}=c(t)-c(0) ∫l(0)l(t)?k(t)n1?dk(t)=c(t)?c(0)1?n1?[k(t)]1?n?1?n1?[k(0)]1?n=c(t)?c(0)
令Xt=k(t),Bt=c(t)X_t=k(t), B_t=c(t)Xt?=k(t),Bt?=c(t),得到
Xt1?n?X01?n=(1?n)BtXt=[X01?n+(1?n)Bt]11?nX_t^{1-n}-X_0^{1-n}=(1-n)B_t\\ X_t=[X_0^{1-n}+(1-n)B_t]^{\frac{1}{1-n}} Xt1?n??X01?n?=(1?n)Bt?Xt?=[X01?n?+(1?n)Bt?]1?n1?
參考資料
stochastic differential equation(SDE) part1 Jerry Xu
總結
以上是生活随笔為你收集整理的【SDE】随机微分方程(1)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Android JS 通过X5WebVi
- 下一篇: matlab中提取微分方程某点的值,从随