时序分析:Kalman滤波(状态空间)
生活随笔
收集整理的這篇文章主要介紹了
时序分析:Kalman滤波(状态空间)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
在現實生活中, 數據的出現大多數是以非平穩形式, 這就涉及到了動態數據所構成的時間序列的分解.關于時間序列的分解, PeterJ.Brochwell&RichardA.Davis在其著作《timeSerieS:TheoryandMethodS》中己指出:分解時間序列的目的旨在估計和抽取確定性成分Tt,St,Ct,以使殘量再即隨機項是一平穩過程.進而求得關于隨機項的合適概率模型,分析它的性質,并連同Tt,St,Ct達到擬合和預測的目的。
?????? 實際上,對于時間序列的分解預測問題,主要問題是對前三項的分離和預測,而隨機項即平穩序列的擬合現今理論己相當成熟。
?????? 若對經濟序列等暗含周期序列進行深入的分析研究時, 將周期分離出來是十分必要的.而用狀態空間方法對時間序列進行分解就能解決這個問題.用狀態空間方法對時間序列進行分解,其 效果與Bayes方法相仿,但計算量較小。
狀態空間模型 ?????? 狀態空間模型是動態時域模型,以隱含著的時間為自變量。狀態空間模型在經濟時間序列分析中的應用正在迅速增加。其中應用較為普遍的狀態空間模型是由Akaike提出并由Mehra進一步發展而成的典型相關(canonical correlation)方法。由Aoki等人提出的估計向量值狀態空間模型的新方法能得到所謂內部平衡的狀態空間模型,只要去掉系統矩陣中的相應元素就可以得到任何低階近似模型而不必重新估計,而且只要原來的模型是穩定的,則得到的低階近似模型也是穩定的。
協調積分概念的提出具有兩方面的意義: ① 如果一組非平穩時間序列是協調積分過程,就有可能同時考察他們之間的長期穩定關系和短期關系的變化; ② 如果一組非平穩時間序列是協調積分過程,則只要將協調回歸誤差代入系統狀態方程即可糾正系統下一時刻狀態的估計值,形成所謂誤差糾正模型。
?????? Aoki的向量值狀態空間模型在處理積分時間序列時,引入了協調積分概念和與之相關的誤差糾正方法,因此向量值狀態空間模型也是誤差糾正模型。 一個向量值時間序列是否為積分序列需判斷其是否含有單位根,即狀態空間模型的動態矩陣是否含有量值為1的特征值。
?????? 根據動態矩陣的特征值即可將時間序列分解成兩個部分,其中特征值為1的部分(包括接近1的“近積分”部分)表示隨機游走趨勢,其余為弱平穩部分,兩部分分別建模就得到了兩步建模法中的趨勢模型和周期模型。 狀態空間模型的假設條件是動態系統符合馬爾科夫特性,即給定系統的現在狀態,則系統的將來與其過去獨立
空間模型 基于狀態空間模型的時間序列預測的優點是:
優點一 狀態空間模型是一種結構模型,基于狀態空間分解模型的時間序列預測,便于分析者利用存在的統計理論對模型進行統計檢驗。 優點二
?????? 實際上,對于時間序列的分解預測問題,主要問題是對前三項的分離和預測,而隨機項即平穩序列的擬合現今理論己相當成熟。
?????? 若對經濟序列等暗含周期序列進行深入的分析研究時, 將周期分離出來是十分必要的.而用狀態空間方法對時間序列進行分解就能解決這個問題.用狀態空間方法對時間序列進行分解,其 效果與Bayes方法相仿,但計算量較小。
?????? 轉自于百度百科......
一、時序的空間狀態描述
狀態空間模型概述
狀態空間模型 ?????? 狀態空間模型是動態時域模型,以隱含著的時間為自變量。狀態空間模型在經濟時間序列分析中的應用正在迅速增加。其中應用較為普遍的狀態空間模型是由Akaike提出并由Mehra進一步發展而成的典型相關(canonical correlation)方法。由Aoki等人提出的估計向量值狀態空間模型的新方法能得到所謂內部平衡的狀態空間模型,只要去掉系統矩陣中的相應元素就可以得到任何低階近似模型而不必重新估計,而且只要原來的模型是穩定的,則得到的低階近似模型也是穩定的。
狀態空間模型分類
狀態空間模型按所受影響因素的不同分為: (1)確定性狀態空間模型 (2)隨機性狀態空間模型 狀態空間模型按數值形式分為: (1)離散空間狀態模型 (2)連續空間狀態模型狀態空間模型意義
狀態空間模型起源于平穩時間序列分析。當用于非平穩時間序列分析時需要將非平穩時間序列分解為隨機游走成分(趨勢)和弱平穩成分兩個部分分別建模。 含有隨機游走成分的時間序列又稱積分時間序列,因為隨機游走成分是弱平穩成分的和或積分。當一個向量值積分序列中的某些序列的線性組合變成弱平穩時就稱這些序列構成了協調積分(cointegrated)過程。 非平穩時間序列的線性組合可能產生平穩時間序列這一思想可以追溯到回歸分析,Granger提出的協調積分概念使這一思想得到了科學的論證。 Aoki和Cochrane等人的研究表明:很多非平穩多變量時間序列中的隨機游走成分比以前人們認為的要小得多,有時甚至完全消失。協調積分概念的提出具有兩方面的意義: ① 如果一組非平穩時間序列是協調積分過程,就有可能同時考察他們之間的長期穩定關系和短期關系的變化; ② 如果一組非平穩時間序列是協調積分過程,則只要將協調回歸誤差代入系統狀態方程即可糾正系統下一時刻狀態的估計值,形成所謂誤差糾正模型。
?????? Aoki的向量值狀態空間模型在處理積分時間序列時,引入了協調積分概念和與之相關的誤差糾正方法,因此向量值狀態空間模型也是誤差糾正模型。 一個向量值時間序列是否為積分序列需判斷其是否含有單位根,即狀態空間模型的動態矩陣是否含有量值為1的特征值。
?????? 根據動態矩陣的特征值即可將時間序列分解成兩個部分,其中特征值為1的部分(包括接近1的“近積分”部分)表示隨機游走趨勢,其余為弱平穩部分,兩部分分別建模就得到了兩步建模法中的趨勢模型和周期模型。 狀態空間模型的假設條件是動態系統符合馬爾科夫特性,即給定系統的現在狀態,則系統的將來與其過去獨立
狀態空間模型的特點
狀態空間模型具有如下特點: 1、狀態空間模型不僅能反映系統內部狀態,而且能揭示系統內部狀態與外部的輸入和輸出變量的聯系。 2、狀態空間模型將多個變量時間序列處理為向量時間序列,這種從變量到向量的轉變更適合解決多輸入輸出變量情況下的建模問題。 3、狀態空間模型能夠用現在和過去的最小心信息形式描述系統的狀態,因此,它不需要大量的歷史數據資料,既省時又省力狀態空間模型的時間序列預測的優點
空間模型 基于狀態空間模型的時間序列預測的優點是:
優點一 狀態空間模型是一種結構模型,基于狀態空間分解模型的時間序列預測,便于分析者利用存在的統計理論對模型進行統計檢驗。 優點二
狀態空間模型求解算法的核心是Kalman濾波,Kalman濾波是在時刻t基于所有可得到的信息計算狀態向量的最理想的遞推過程。當擾動項和初始狀態向量服從正態分布時,Kalman濾波能夠通過預測誤差分解計算似然函數,從而可以對模型中的所有未知參數進行估計,并且當新的觀測值一旦得到,就可以利用Kalman濾波連續地修正狀態向量的估計
狀態空間模型的建立和預測的步驟
為了避免由于狀態空間模型的不可控制性而導致的錯誤的分解形式,當對一個單整時間序列建立狀態空間分解模型并進行預測,應按下面的步驟執行: (1) 對相關的時間序列進行季節調整,并將季節要素序列外推; (2) 對季節調整后的時間序列進行單位根檢驗,確定單整階數,然后在ARIMA過程中選擇最接近的模型; (3) 求出ARIMA模型的系數; (4) 用ARIMA模型的系數準確表示正規狀態空間模型,檢驗狀態空間模型的可控制性; (5) 利用Kalman濾波公式估計狀態向量,并對時間序列進行預測。 (6) 把外推的季節要素與相應的預測值合并,就得到經濟時間序列的預測結果。
Code:
.................................................
總結
以上是生活随笔為你收集整理的时序分析:Kalman滤波(状态空间)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 时序分析:DTW算法(基于模板)
- 下一篇: 晋江小说阅读如何购买vip(全本完结言情