spark加盐(salting)操作
首先研究下,spark里面有沒有salting這個說法呢?
百度上沒有,但是谷歌上有,所以我取了這么個博客標題。
兩階段聚合(局部聚合+全局聚合)
方案適用場景:對RDD執行reduceByKey等聚合類shuffle算子或者在Spark SQL中使用group by語句進行分組聚合時,比較適用這種方案。
方案實現思路:這個方案的核心實現思路就是進行兩階段聚合。
第一次是局部聚合,先給每個key都打上一個隨機數,比如10以內的隨機數,此時原先一樣的key就變成不一樣的了,比如(hello, 1) (hello, 1) (hello, 1) (hello, 1),就會變成(1_hello, 1) (1_hello, 1) (2_hello, 1) (2_hello, 1)。
接著對打上隨機數后的數據,執行reduceByKey等聚合操作,進行局部聚合,那么局部聚合結果,就會變成了(1_hello, 2) (2_hello, 2)。
然后將各個key的前綴給去掉,就會變成(hello,2)(hello,2),再次進行全局聚合操作,就可以得到最終結果了,比如(hello, 4)。
方案實現原理:將原本相同的key通過附加隨機前綴的方式,變成多個不同的key,就可以讓原本被一個task處理的數據分散到多個task上去做局部聚合,進而解決單個task處理數據量過多的問題。接著去除掉隨機前綴,再次進行全局聚合,就可以得到最終的結果。具體原理見下圖。
方案優點:對于聚合類的shuffle操作導致的數據傾斜,效果是非常不錯的。通常都可以解決掉數據傾斜,或者至少是大幅度緩解數據傾斜,將Spark作業的性能提升數倍以上。
方案缺點:僅僅適用于聚合類的shuffle操作,適用范圍相對較窄。如果是join類的shuffle操作,還得用其他的解決方案。
完整代碼見:
https://github.com/appleyuchi/spark_data_skew
?
總結
以上是生活随笔為你收集整理的spark加盐(salting)操作的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 网易大神如何生成个人图鉴(网易游戏官网)
- 下一篇: QQ飞车手游抽迅捷流星需要多少钻石 QQ