机器学习实战之信用卡诈骗(三)
生活随笔
收集整理的這篇文章主要介紹了
机器学习实战之信用卡诈骗(三)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
SMOTE樣本生成策略
import pandas as pd from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.matrics import confusion_matrix from sklearn.model_selection import train_test_splitcredit_cards = pd.read_csv('creditcard.csv')columns = credit_cards.columns features_columns = columns.delete(len(columns)-1)features=credit_cards[features_columns] lables=credit_cards['Class']features_train, features_test, lables_train, lables_test = train_test_split(features,lables,test_size=02,random_state=0)oversampler=SMOTE(random_state=0) os_features,os_labels = oversampler.fit_sample(features_train,lables_train)print(len(os_labels[os_labels==1]))os_features = pd.DataFrame(os_features) os_labels = pd.DataFrame(os_labels) best_c = printing_Kfold_scores(os_features,os_labels)lr = LogisticRegression(C = best_c, penalty = '11') lr.fit(os_features,os_labels.values.ravel()) y_pred = lr.predict(features_test.values)cnf_matrix = confusion_matrix(lables_test,y_pred) print(np.set_printoption(precision=2))print('Recall metric in the testing dataset:',cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1]))class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix,classes=class_names,title='Confusion matrix')總結
以上是生活随笔為你收集整理的机器学习实战之信用卡诈骗(三)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 半加器——Verilog HDL语言
- 下一篇: 教师计算机应用能力提升培训总结,2019