计算机图形学的功能需求,图形学课程设计要求 《计算机图形学》.doc
《計算機圖形學》課程設計
一、 設計要求
1. 根據設計任務,編制程序,在機器上調試運行,并通過上機考核。
2. 按照下面的“三、課程設計報告格式”的要求,寫出課程設計報告。
3. 課程設計報告在第19周之前交來。
二、 設計任務
1.
1)給定直線的起點坐標為P0(x0,y0)、終點坐標為P1(x1,y1),容易計算出直線斜率k。假設0≤k≤1,則x方向為主位移方向,繪制直線的遞推公式為:
,這稱為數值微分法(Digital Differential Analyzer,DDA),請編程實現之。提示:DDA算法實質上是對直線斜率進行了四舍五入計算。
2)橢圓的掃描轉換。
2.
用鼠標在屏幕上繪制任意頂點數的封閉多邊形并填充,填充效果如下圖所示。編程要求:⑴多邊形的頂點數不受限制;
⑵按下鼠標左鍵,拖動鼠標繪制多邊形,同時按下Shift鍵可以繪制水平邊或垂直邊;
⑶單擊鼠標右鍵閉合多邊形;
⑷使用邊緣填充算法填充多邊形。
3
請按照圖所示,使用對話框輸入直線的起點和終點坐標。在窗口左側區域繪制輸入直線和“窗口”,在窗口右邊右側區域繪制“視區”并輸出裁剪結果。這里需要用到窗視變換的公式。請分別用Cohen-Sutherland算法、中點分割裁剪算法和梁友棟-Barsky算法實現。
4
在屏幕上使用鼠標繪制控制多邊形,根據控制多邊形的階次繪制Bezier曲線和B樣條曲線。
5.
1) 使用VC編程實現,以直角三角形為基礎繪制下圖所示Sierpinski三角形。
2)以屏幕范圍為基礎繪制下圖所示Sierpinski地毯。
6.
1)給定直線的起點顏色(如紅色)和終點顏色(如黑色)不同,請使用中點Bresenham算法繪制任意斜率的顏色漸變直線,效果如圖所示。
2)用梁友棟-Barsky算法裁剪線段P1(3,3),P2(-2,-1),裁剪窗口為wxl=0,wxr=2,wyb=0,wyt=2。
7.
邊緣填充算法的重要缺點是每一個像素可能被多次訪問。為此,在多邊形外接矩形的中心設置柵欄,把多邊形分成兩部分,如圖所示。在處理每條掃描線時,只將交點與柵欄間的像素取補。填充效果如圖所示。
帶柵欄的的多邊形圖
帶柵欄的多邊形填充效果圖
8.
掃描線種子填充算法是通過掃描線來填充水平像素段,僅將每條掃描線的最右端像素點入棧,可以有效提高算法效率,請編程實現。
9.
1)給定下圖所示的四個控制點:P0=(228,456),P1=(294,247),P2=(452,123),P3=(705,197)。分別繪制三次Bezier曲線和三次B樣條曲線。
2)使用VC編程,在窗口中一次繪制n=0~5的所有Cantor圖
10. 請使用GetCurrentTime()函數讀取系統時間,對時鐘指針進行反走樣,下圖的左側為走樣時鐘,右側為反走樣時鐘。
三、 設計報告格式
1. 封面格式 (題目、姓名、學號、專業、完成日期等)
封面范例:
《計算機圖形學》課程設計
題目:
指導老師:
姓 名:
學 號:
院 (系):
專 業:
完成日期: 年 月 日
2. 正文格式
1課題題目介紹
2 整體功能及設計
3 編程實現
4 使用說明
5 結果分析
6 課程設計總結
四、 課程設計考核標準:
通過答辯方式,并結合學生的動手能力,獨立分析解決問題的能力和創新精神,總結報告和答辯水平以及學習態度綜合考評。
學生的動手能力,創新精神,程序設計的可用性,實用性,通用性,可擴充性(40%)
答辯水平(20%)
總結報告(40%)
8
展開閱讀全文
總結
以上是生活随笔為你收集整理的计算机图形学的功能需求,图形学课程设计要求 《计算机图形学》.doc的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 家庭单台计算机连接宽带步骤,两台win7
- 下一篇: 三相四线制