然而,盡管已經有大量方法用于發現腫瘤細胞以及確定腫瘤的發展階段,甚至還可以根據特定的標志物預測癌癥患者的預后情況,但是研究腫瘤代謝重編程仍存在一些局限性,例如: a) 如何個性化地檢測患者腫瘤微環境中癌細胞與正常細胞的代謝異質性? b) 正常細胞代謝網絡與癌細胞不同時期代謝網絡的結構差異是什么? c) 腫瘤微環境中的某些代謝物或者其他類型細胞如何改變或者是否聯合影響癌細胞的基因表達?它們之間是否存在代謝干擾? d) 宿主機體如何控制腫瘤發生,進展和轉移?
Warburg O. The Chemical Constitution of Respiration Ferment. Science. 1928;68(1767):437-43; doi: 10.1126/science.68.1767.437.
Warburg O. On respiratory impairment in cancer cells. Science. 1956;124(3215):269-70.
Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14; doi: 10.1126/science.123.3191.309.
Warburg O, Wind F, Negelein E. The Metabolism of Tumors in the Body. J Gen Physiol. 1927;8(6):519-30; doi: 10.1085/jgp.8.6.519.
Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC, et al. Heterogeneity of tumor-induced gene expression changes in the human metabolic network. Nat Biotechnol. 2013;31(6):522-9; doi: 10.1038/nbt.2530.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74; doi: 10.1016/j.cell.2011.02.013.
Langsten KL, Kim JH, Sarver AL, Dewhirst M, Modiano JF. Comparative Approach to the Temporo-Spatial Organization of the Tumor Microenvironment. Front Oncol. 2019;9:1185; doi: 10.3389/fonc.2019.01185.
Ribatti D. Chapter 1 - Tumor microenvironment. In: Ribatti D, editor. Tumor Microenvironment Regulation of Tumor Expansion. Academic Press; 2021. p. 1-10.
Anderson NM, Simon MC. The tumor microenvironment. Curr Biol. 2020;30(16):R921-R5; doi: 10.1016/j.cub.2020.06.081.
Damaghi M, West J, Robertson-Tessi M, Xu L, Ferrall-Fairbanks MC, Stewart PA, et al. The harsh microenvironment in early breast cancer selects for a Warburg phenotype. Proc Natl Acad Sci U S A. 2021;118(3); doi: 10.1073/pnas.2011342118.
Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17(11):1498-503; doi: 10.1038/nm.2492.
Martinez-Outschoorn UE, Peiris-Pages M, Pestell RG, Sotgia F, Lisanti MP. Cancer metabolism: a therapeutic perspective. Nat Rev Clin Oncol. 2017;14(2):113; doi: 10.1038/nrclinonc.2017.1.
Bilodeau J-F, Gevariya N, Larose J, Robitaille K, Roy J, Oger C, et al. Long chain omega-3 fatty acids and their oxidized metabolites are associated with reduced prostate tumor growth. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2021;164:102215; doi: https://doi.org/10.1016/j.plefa.2020.102215.
Wu Z, Zhan Y, Wang L, Tong J, Zhang L, Lin M, et al. Identification of osalmid metabolic profile and active metabolites with anti-tumor activity in human hepatocellular carcinoma cells. Biomed Pharmacother. 2020;130:110556; doi: 10.1016/j.biopha.2020.110556.
Ma X, Yu X, Min J, Chen X, Liu R, Cui X, et al. Genistein interferes with antitumor effects of cisplatin in an ovariectomized breast cancer xenograft tumor model. Toxicol Lett. 2021;355:106-15; doi: 10.1016/j.toxlet.2021.11.013.
Sun L, Song L, Wan Q, Wu G, Li X, Wang Y, et al. cMyc-mediated activation of serine biosynthesis pathway is critical for cancer progression under nutrient deprivation conditions. Cell Res. 2015;25(4):429-44; doi: 10.1038/cr.2015.33.
Zou Y, Liu B, Li L, Yin Q, Tang J, Jing Z, et al. IKZF3 deficiency potentiates chimeric antigen receptor T cells targeting solid tumors. Cancer Lett. 2022;524:121-30; doi: 10.1016/j.canlet.2021.10.016.
Rosenbaum SR, Tiago M, Caksa S, Capparelli C, Purwin TJ, Kumar G, et al. SOX10 requirement for melanoma tumor growth is due, in part, to immune-mediated effects. Cell Reports. 2021;37(10):110085; doi: https://doi.org/10.1016/j.celrep.2021.110085.
Chen Z, Wu J, Liu B, Zhang G, Wang Z, Zhang L, et al. Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations. Cell Reports. 2021;36(4):109431; doi: https://doi.org/10.1016/j.celrep.2021.109431.
Bibi S, Javid MA, Muhammad B, Sanauulah, Habiba U, Rashid Q, et al. Metabolic evaluation of brain tumor using magnetic resonance spectroscopy. Materials Today: Proceedings. 2021;47:S28-S32; doi: https://doi.org/10.1016/j.matpr.2020.04.646.
Chen Y, Wang T, Xie P, Song Y, Wang J, Cai Z. Mass spectrometry imaging revealed alterations of lipid metabolites in multicellular tumor spheroids in response to hydroxychloroquine. Anal Chim Acta. 2021;1184:339011; doi: 10.1016/j.aca.2021.339011.
Li Z, Bao H. Anti-tumor effect of Inonotus hispidus petroleum ether extract in H22 tumor-bearing mice and analysis its mechanism by untargeted metabonomic. J Ethnopharmacol. 2021;285:114898; doi: 10.1016/j.jep.2021.114898.
Lewis JE, Kemp ML. Integration of machine learning and genome-scale metabolic modeling identifies multi-omics biomarkers for radiation resistance. Nat Commun. 2021;12(1):2700; doi: 10.1038/s41467-021-22989-1.
Xiao Z, Dai Z, Locasale JW. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun. 2019;10(1):3763; doi: 10.1038/s41467-019-11738-0.
Su Y, Ko ME, Cheng H, Zhu R, Xue M, Wang J, et al. Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line. Nat Commun. 2020;11(1):2345; doi: 10.1038/s41467-020-15956-9.
Sun C, Li T, Song X, Huang L, Zang Q, Xu J, et al. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc Natl Acad Sci U S A. 2019;116(1):52-7; doi: 10.1073/pnas.1808950116.
Zang Q, Sun C, Chu X, Li L, Gan W, Zhao Z, et al. Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures. Anal Chim Acta. 2021;1155:338342; doi: 10.1016/j.aca.2021.338342.
Jin N, Bi A, Lan X, Xu J, Wang X, Liu Y, et al. Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nat Commun. 2019;10(1):2701; doi: 10.1038/s41467-019-10427-2.
Rossi T, Vergara D, Fanini F, Maffia M, Bravaccini S, Pirini F. Microbiota-Derived Metabolites in Tumor Progression and Metastasis. Int J Mol Sci. 2020;21(16); doi: 10.3390/ijms21165786.
Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 2016;536(7617):479-83; doi: 10.1038/nature19084.
Lewis JE, Forshaw TE, Boothman DA, Furdui CM, Kemp ML. Personalized Genome-Scale Metabolic Models Identify Targets of Redox Metabolism in Radiation-Resistant Tumors. Cell Syst. 2021;12(1):68-81 e11; doi: 10.1016/j.cels.2020.12.001.
Chakraborty S, Hosen MI, Ahmed M, Shekhar HU. Onco-Multi-OMICS Approach: A New Frontier in Cancer Research. Biomed Res Int. 2018;2018:9836256; doi: 10.1155/2018/9836256.
Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu JC, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237-i45; doi: 10.1093/bioinformatics/btq182.
Mo QX, Wang SJ, Seshan VE, Olshen AB, Schultz N, Sander C, et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. P Natl Acad Sci USA. 2013;110(11):4245-50; doi: 10.1073/pnas.1208949110.
Wang B, Mezlini AM, Demir F, Fiume M, Tu ZW, Brudno M, et al. Similarity network fusion for aggregating data types on a genomic scale. Nat Methods. 2014;11(3):333-U19; doi: 10.1038/Nmeth.2810.
Dimitrakopoulos C, Hindupur SK, Hafliger L, Behr J, Montazeri H, Hall MN, et al. Network-based integration of multi-omics data for prioritizing cancer genes. Bioinformatics. 2018;34(14):2441-8; doi: 10.1093/bioinformatics/bty148.
Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform Biol Insights. 2020;14:1177932219899051; doi: 10.1177/1177932219899051.
Lin E, Lane HY. Machine learning and systems genomics approaches for multi-omics data. Biomark Res. 2017;5; doi: ARTN 2 10.1186/s40364-017-0082-y.
Xie N-N, Wang F-F, Zhou J, Liu C, Qu F. Establishment and Analysis of a Combined Diagnostic Model of Polycystic Ovary Syndrome with Random Forest and Artificial Neural Network. BioMed Research International. 2020;2020:1-13; doi: 10.1155/2020/2613091.
Feng JR, Zhang HM, Li FH. Investigating the relevance of major signaling pathways in cancer survival using a biologically meaningful deep learning model. Bmc Bioinformatics. 2021;22(1); doi: ARTN 47 10.1186/s12859-020-03850-6.
Gao Y, Yuan Q, Mao Z, Liu H, Ma H. Global connectivity in genome-scale metabolic networks revealed by comprehensive FBA-based pathway analysis. BMC Microbiol. 2021;21(1):292; doi: 10.1186/s12866-021-02357-1.
Martínez-Reyes I, Chandel NS. Cancer metabolism: looking forward. Nature Reviews Cancer. 2021;21(10):669-80; doi: 10.1038/s41568-021-00378-6.
Han J, Li Q, Chen Y, Yang Y. Recent Metabolomics Analysis in Tumor Metabolism Reprogramming. Front Mol Biosci. 2021;8:763902; doi: 10.3389/fmolb.2021.763902.
Counihan JL, Grossman EA, Nomura DK. Cancer Metabolism: Current Understanding and Therapies. Chem Rev. 2018;118(14):6893-923; doi: 10.1021/acs.chemrev.7b00775.
Scalise M, Pochini L, Console L, Losso MA, Indiveri C. The Human SLC1A5 (ASCT2) Amino Acid Transporter: From Function to Structure and Role in Cell Biology. Front Cell Dev Biol. 2018;6:96; doi: 10.3389/fcell.2018.00096.
Huang F, Zhao Y, Zhao J, Wu S, Jiang Y, Ma H, et al. Upregulated SLC1A5 promotes cell growth and survival in colorectal cancer. Int J Clin Exp Pathol. 2014;7(9):6006-14.
Zhao JY, Feng KR, Wang F, Zhang JW, Cheng JF, Lin GQ, et al. A retrospective overview of PHGDH and its inhibitors for regulating cancer metabolism. Eur J Med Chem. 2021;217:113379; doi: 10.1016/j.ejmech.2021.113379.
Zhang Y, Yu H, Zhang J, Gao H, Wang S, Li S, et al. Cul4A-DDB1-mediated monoubiquitination of phosphoglycerate dehydrogenase promotes colorectal cancer metastasis via increased S-adenosylmethionine. J Clin Invest. 2021;131(21); doi: 10.1172/JCI146187.
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2020;9(1):1777625; doi: 10.1080/2162402X.2020.1777625.
Newman AC, Maddocks ODK. One-carbon metabolism in cancer. British journal of cancer. 2017;116(12):1499-504; doi: 10.1038/bjc.2017.118.
Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease. Cell metabolism. 2017;25(1):27-42; doi: 10.1016/j.cmet.2016.08.009.
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers. 2021;13(3); doi: ARTN 474 10.3390/cancers13030474.
Yang P, Su CX, Luo X, Zeng H, Zhao L, Wei L, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Letters. 2018;438:76-85; doi: 10.1016/j.canlet.2018.09.006.
Pan JM, Fan ZY, Wang ZQ, Dai QQ, Xiang Z, Yuan F, et al. CD36 mediates palmitate acid-induced metastasis of gastric cancer via AKT/GSK-3/-catenin pathway. J Exp Clin Canc Res. 2019;38; doi: ARTN 52 10.1186/s13046-019-1049-7.
Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37(17):2285-301; doi: 10.1038/s41388-017-0093-z.
Junk DJ, Cipriano R, Bryson BL, Gilmore HL, Jackson MW. Tumor Microenvironmental Signaling Elicits Epithelial-Mesenchymal Plasticity through Cooperation with Transforming Genetic Events. Neoplasia. 2013;15(9):1086-95; doi: 10.1593/neo.131114.
Chekulayev V, Mado K, Shevchuk I, Koit A, Kaldma A, Klepinin A, et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: alterations in regulation of mitochondrial respiration and metabolic fluxes. Biochem Biophys Rep. 2015;4:111-25; doi: 10.1016/j.bbrep.2015.08.020.
Baghba R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, et al. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1); doi: ARTN 59 10.1186/s12964-020-0530-4.
Seager RJ, Hajal C, Spill F, Kamm RD, Zaman MH. Dynamic interplay between tumour, stroma and immune system can drive or prevent tumour progression. Converg Sci Phys Oncol. 2017;3:034002; doi: 10.1088/2057-1739/aa7e86.