时间复杂度和空间复杂度,一看就懂,面试前必过一遍
一、定義
時(shí)間和空間是程序的一個(gè)硬性指標(biāo),一個(gè)用來衡量 代碼執(zhí)行的速度 ,一個(gè)用來衡量 存儲(chǔ)空間的大小
程序 = ?數(shù)據(jù)結(jié)構(gòu) + 算法
- 時(shí)間復(fù)雜度:就是執(zhí)行程序的快慢,速度越快,時(shí)間復(fù)雜度就越好。 
- 空間復(fù)雜度:就是執(zhí)行程序需要的存儲(chǔ)空間的大小,執(zhí)行程序需要的存儲(chǔ)空間越小就越好。 
二、時(shí)間復(fù)雜度的計(jì)算
表示方法
我們一般用 大O符號(hào)表示法來表示時(shí)間復(fù)雜度:T(n) = O(f(n)) n是影響復(fù)雜度變化的因子,f(n)是復(fù)雜度具體的算法。
常見的時(shí)間復(fù)雜度量級(jí)
- 常數(shù)階O(1) 
- 線性階O(n) 
- 對(duì)數(shù)階O(logN) 
- 線性對(duì)數(shù)階O(nlogN) 
- 平方階O(n2) 
- 立方階O(n3) 
- K次方階O(n^k) 
- 指數(shù)階(2^n) 
接下來再看一下不同的復(fù)雜度所對(duì)應(yīng)的算法類型。
常數(shù)階O(1)
int?a?=?1; int?b?=?2; int?c?=?3; 123我們假定每執(zhí)行一行代碼所需要消耗的時(shí)間為1個(gè)時(shí)間單位,那么以上3行代碼就消耗了3個(gè)時(shí)間單位。那是不是這段代碼的時(shí)間復(fù)雜度表示為O(n)呢 ?其實(shí)不是的,因?yàn)榇驩符號(hào)表示法并不是用于來真實(shí)代表算法的執(zhí)行時(shí)間的,它是用來表示代碼執(zhí)行時(shí)間的增長變化趨勢的。上面的算法并沒有隨著某個(gè)變量的增長而增長,那么無論這類代碼有多長,即使有幾萬幾十萬行,都可以用O(1)來表示它的時(shí)間復(fù)雜度。
線性階O(n)
for(i?=?1;?i?<=?n;?i++)?{j?=?i;j++; } 1234看這段代碼會(huì)執(zhí)行多少次呢?第1行會(huì)執(zhí)行1次,第2行和第3行會(huì)分別執(zhí)行n次,總的執(zhí)行時(shí)間也就是 2n + 1 次,那它的時(shí)間復(fù)雜度表示是 O(2n + 1) 嗎?No ! 還是那句話:“大O符號(hào)表示法并不是用于來真實(shí)代表算法的執(zhí)行時(shí)間的,它是用來表示代碼執(zhí)行時(shí)間的增長變化趨勢的”。所以它的時(shí)間復(fù)雜度其實(shí)是O(n);
對(duì)數(shù)階O(logN)
int?i?=?1; while(i?<?n)?{i?=?i?*?2; } 1234可以看到每次循環(huán)的時(shí)候 i 都會(huì)乘2,那么總共循環(huán)的次數(shù)就是log2n,因此這個(gè)代碼的時(shí)間復(fù)雜度為O(logn)。這兒有個(gè)問題,為什么明明應(yīng)該是O(log2n),卻要寫成O(logn)呢?其實(shí)這里的底數(shù)對(duì)于研究程序運(yùn)行效率不重要,寫代碼時(shí)要考慮的是數(shù)據(jù)規(guī)模n對(duì)程序運(yùn)行效率的影響,常數(shù)部分則忽略,同樣的,如果不同時(shí)間復(fù)雜度的倍數(shù)關(guān)系為常數(shù),那也可以近似認(rèn)為兩者為同一量級(jí)的時(shí)間復(fù)雜度。
線性對(duì)數(shù)階O(nlogN)
for(m?=?1;?m?<?n;?m++)?{i?=?1;while(i?<?n)?{i?=?i?*?2;} } 123456線性對(duì)數(shù)階O(nlogN) 其實(shí)非常容易理解,將時(shí)間復(fù)雜度為O(logn)的代碼循環(huán)N遍的話,那么它的時(shí)間復(fù)雜度就是 n * O(logN),也就是了O(nlogN)。
平方階O(n2)
for(x?=?1;?i?<=?n;?x++){for(i?=?1;?i?<=?n;?i++)?{j?=?i;j++;} } 123456把 O(n) 的代碼再嵌套循環(huán)一遍,它的時(shí)間復(fù)雜度就是 O(n2) 了。
立方階O(n3)、K次方階O(n^k)
參考上面的O(n2) 去理解就好了,O(n3)相當(dāng)于三層n循環(huán),其它的類似。
三、空間復(fù)雜度計(jì)算
空間復(fù)雜度 O(1)
如果算法執(zhí)行所需要的臨時(shí)空間不隨著某個(gè)變量n的大小而變化,即此算法空間復(fù)雜度為一個(gè)常量,可表示為 O(1)。
int?i?=?1; int?j?=?2; ++i; j++; int?m?=?i?+?j; 12345代碼中的 i、j、m 所分配的空間都不隨著處理數(shù)據(jù)量變化,因此它的空間復(fù)雜度 S(n) = O(1)。
空間復(fù)雜度 O(n)
int[]?m?=?new?int[n] for(i?=?1;?i?<=?n;?++i)?{j?=?i;j++; } 12345這段代碼中,第一行new了一個(gè)數(shù)組出來,這個(gè)數(shù)據(jù)占用的大小為n,后面雖然有循環(huán),但沒有再分配新的空間,因此,這段代碼的空間復(fù)雜度主要看第一行即可,即 S(n) = O(n)。
總結(jié)
評(píng)價(jià)一個(gè)算法的效率主要是看它的時(shí)間復(fù)雜度和空間復(fù)雜度情況。可能有的開發(fā)者接觸時(shí)間復(fù)雜度和空間復(fù)雜度的優(yōu)化不太多(尤其是客戶端),但在服務(wù)端的應(yīng)用是比較廣泛的,在巨大并發(fā)量的情況下,小部分時(shí)間復(fù)雜度或空間復(fù)雜度上的優(yōu)化都能帶來巨大的性能提升,是非常有必要了解的。
大家好,下面是我的另一個(gè)號(hào),會(huì)發(fā)一些比較私密的內(nèi)容,歡迎大家關(guān)注!
總結(jié)
以上是生活随笔為你收集整理的时间复杂度和空间复杂度,一看就懂,面试前必过一遍的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
 
                            
                        - 上一篇: ARM-汇编指令集
- 下一篇: Unity3D 渲染管线全流程解析
