传统微积分学的尴尬
?? 7月27日,J. Keisler《基礎微積分》第2.2節上傳互聯網之后,讓國內傳統微積分學者非常尷尬,坐立不安。為什么?
?????? 搜索百度百科,查閱“十一五”國家級規劃教材,都有如下說法:
????? 設函數y= f(x)在x0的鄰域內有定義,x0及x0+ Δx在此區間內。如果函數的增量Δy= f(x0 + Δx) - f(x0)可表示為Δy= AΔx +o(Δx)(其中A是不依賴于Δx的常數),而o(Δx)是比Δx高階的無窮小,注:o讀作奧密克戎,希臘字母,那么稱函數f(x)在點x0是可微的,且AΔx稱作函數在點x0相應于自變量增量Δx的微分,記作dy,即dy= AΔx。函數的微分是函數增量的主要部分,且是Δx的線性函數,故說函數的微分是函數增量的線性主部(△x→0)。
????????? 設函數y= f(x)在某區間內有定義,x0及x0+△x在這區間內,若函數的增量Δy= f(x0 + Δx) ? f(x0)可表示為Δy= AΔx + o(Δx),其中A是不依賴于△x的常數,o(Δx)是△x的高階無窮小,則稱函數y= f(x)在點x0是可微的。AΔx叫做函數在點x0相應于自變量增量△x的微分,記作dy,即:dy=AΔx。微分dy是自變量改變量△x的線性函數,dy與△y的差是關于△x的高階無窮小量,我們把dy稱作△y的線性主部。得出:當△x→0時,△y≈dy。導數的記號為:(dy)/(dx)=f′(X),現在我們可以發現,它不僅表示導數的記號,而且還可以表示兩個微分的比值(把△x看成dx,即:定義自變量的增量等于自變量的微分),還可表示為dy=f′(X)dX。
??????????? 我們要問:”當△x→0時,△y≈ dy“這句話是什么意思?什么叫“△y≈ dy”(△y無限接近于dy)?這么一問,麻煩就來了。
??????????? J.Keisler在第2.2節微分與切線中給出了一個增量定理如下:
INCREMENT THEOREM
?? Let y = f(x).Suppose f′‘(x) exists at a certain point x,and Δx is infinitesimal.
Then Δy is infinitesimal, and
????????????????????????????????? Δy =f’′(x)Δx + εΔx
for some infinitesimal ε, which depends on x and Δx.
同時,給出函數微分的定義如下:
DEFINITION
????????Suppose y depends on x, y = f(x).
????????(i) The differential of x is the independent variable dx = Δx.
????????(ii) The differential of y is the dependent variable dy given by
??????????????????????????????????????? dy = f′'(x)dx.
?????????When dx≠0, the equation above may be rewritten as
??????????????????????
Compare this equation with
???????????????????????
? Figure 2.2.3is not really accurate. The curvature had to be exaggerated(夸大)in order to distinguish the curve and tangent line under the microscope.To give an accurate picture, we need a more complicated figure like Figure 2.2.4, which has a second infinitesimal microscope trained on the point (a+Δx,b+Δy) in the field of view of the original microscope. This second microscope magnifies εdx to a unit length and magnifies Δx to an infinite length.
Figure2.2.4
??????? 兩者相比,真相不言自明。傳統微積分盜用了無窮小微積分的“無限接近于”的概念,現在,顯得尷尬無比,無地自容。
總結
- 上一篇: DllImport的用法
- 下一篇: Ubuntu修改键盘映射