3atv精品不卡视频,97人人超碰国产精品最新,中文字幕av一区二区三区人妻少妇,久久久精品波多野结衣,日韩一区二区三区精品

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

集成学习01_xgboost参数讲解与实战

發(fā)布時(shí)間:2023/12/20 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 集成学习01_xgboost参数讲解与实战 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

本章分以下幾塊來(lái)講解

一.xgboost 模型參數(shù)介紹

二.xgboost 兩種方式實(shí)現(xiàn)

三. 網(wǎng)格搜索最優(yōu)xgboost參數(shù)

一.XGBoost的參數(shù)

XGBoost的作者把所有的參數(shù)分成了三類,這里只介紹我們常用的一些參數(shù),不常用的不做介紹

通用參數(shù):宏觀函數(shù)控制。
Booster參數(shù):控制每一步的booster(tree/regression)。
學(xué)習(xí)目標(biāo)參數(shù):控制訓(xùn)練目標(biāo)的表現(xiàn)。

1 通用參數(shù)

1)booster[默認(rèn)gbtree]

  • 選擇每次迭代的模型,有兩種選擇:
    gbtree:基于樹的模型
    gbliner:線性模型

2)silent[默認(rèn)0]

  • 當(dāng)這個(gè)參數(shù)值為1時(shí),靜默模式開啟,不會(huì)輸出任何信息。
  • 一般這個(gè)參數(shù)就保持默認(rèn)的0,因?yàn)檫@樣能幫我們更好地理解模型。

3)nthread[默認(rèn)值為最大可能的線程數(shù)]

  • 這個(gè)參數(shù)用來(lái)進(jìn)行多線程控制,應(yīng)當(dāng)輸入系統(tǒng)的核數(shù)。
  • 如果你希望使用CPU全部的核,那就不要輸入這個(gè)參數(shù),算法會(huì)自動(dòng)檢測(cè)它。

4)num_feature [set automatically by xgboost, no need to be set by user]

  • boosting過程中用到的特征維數(shù),設(shè)置為特征個(gè)數(shù)。
  • XGBoost會(huì)自動(dòng)設(shè)置,不需要手工設(shè)置。

2 booster參數(shù)

盡管有兩種booster可供選擇,我這里只介紹tree booster,因?yàn)樗谋憩F(xiàn)遠(yuǎn)遠(yuǎn)勝過linear booster,所以linear booster很少用到。

1)eta[默認(rèn)0.3]

  • 和GBM中的 learning rate 參數(shù)類似。
  • 通過減少每一步的權(quán)重,可以提高模型的魯棒性。
  • 典型值為0.01-0.2。

2)min_child_weight[默認(rèn)1]

*決定最小葉子節(jié)點(diǎn)樣本權(quán)重和。

  • 和GBM的 min_child_leaf 參數(shù)類似,但不完全一樣。XGBoost的這個(gè)參數(shù)是最小樣本權(quán)重的和,而GBM參數(shù)是最小樣本總數(shù)。
  • 這個(gè)參數(shù)用于避免過擬合。當(dāng)它的值較大時(shí),可以避免模型學(xué)習(xí)到局部的特殊樣本。
  • 但是如果這個(gè)值過高,會(huì)導(dǎo)致欠擬合。這個(gè)參數(shù)需要使用CV來(lái)調(diào)整。

3)max_depth[默認(rèn)6]

  • 和GBM中的參數(shù)相同,這個(gè)值為樹的最大深度。
  • 這個(gè)值也是用來(lái)避免過擬合的。max_depth越大,模型會(huì)學(xué)到更具體更局部的樣本。
  • 需要使用CV函數(shù)來(lái)進(jìn)行調(diào)優(yōu)。
  • 典型值:3-10

4)max_leaf_nodes

  • 樹上最大的節(jié)點(diǎn)或葉子的數(shù)量。
  • 可以替代max_depth的作用。因?yàn)槿绻傻氖嵌鏄?#xff0c;一個(gè)深度為n的樹最多生成
  • 如果定義了這個(gè)參數(shù),GBM會(huì)忽略max_depth參數(shù)。

5)gamma[默認(rèn)0]

  • 在節(jié)點(diǎn)分裂時(shí),只有分裂后損失函數(shù)的值下降了,才會(huì)分裂這個(gè)節(jié)點(diǎn)。
  • Gamma指定了節(jié)點(diǎn)分裂所需的最小損失函數(shù)下降值。這個(gè)參數(shù)的值越大,算法越保守。這個(gè)參數(shù)的值和損失函數(shù)息息相關(guān),所以是需要調(diào)整的。
  • 模型在默認(rèn)情況下,對(duì)于一個(gè)節(jié)點(diǎn)的劃分只有在其loss function 得到結(jié)果大于0的情況下才進(jìn)行,而gamma 給定了所需的最低loss function的值
  • gamma值使得算法更c(diǎn)onservation,且其值依賴于loss function ,在模型中應(yīng)該進(jìn)行調(diào)參.

6)max_delta_step[默認(rèn)0]

  • 這參數(shù)限制每棵樹權(quán)重改變的最大步長(zhǎng)。如果這個(gè)參數(shù)的值為0,那就意味著沒有約束。如果它被賦予了某個(gè)正值,那么它會(huì)讓這個(gè)算法更加保守。
  • 通常,這個(gè)參數(shù)不需要設(shè)置。但是當(dāng)各類別的樣本十分不平衡時(shí),它對(duì)邏輯回歸是很有幫助的。
  • 這個(gè)參數(shù)一般用不到,但是你可以挖掘出來(lái)它更多的用處。

7)subsample[默認(rèn)1]

  • 和GBM中的subsample參數(shù)一模一樣。這個(gè)參數(shù)控制對(duì)于每棵樹,隨機(jī)采樣的比例。
  • 減小這個(gè)參數(shù)的值,算法會(huì)更加保守,避免過擬合。但是,如果這個(gè)值設(shè)置得過小,它可能會(huì)導(dǎo)致欠擬合。
  • 典型值:0.5-1

8)colsample_bytree[默認(rèn)1]

  • 和GBM里面的max_features參數(shù)類似。用來(lái)控制每棵隨機(jī)采樣的列數(shù)的占比(每一列是一個(gè)特征)。
  • 典型值:0.5-1

9)colsample_bylevel[默認(rèn)1]

  • 用來(lái)控制樹的每一級(jí)的每一次分裂,對(duì)列數(shù)的采樣的占比。
  • 一般不太用這個(gè)參數(shù),因?yàn)閟ubsample參數(shù)和colsample_bytree參數(shù)可以起到相同的作用。但是如果感興趣,可以挖掘這個(gè)參數(shù)更多的用處。

10)lambda[默認(rèn)1]

  • 權(quán)重的L2正則化項(xiàng)。(和Ridge regression類似)。
  • 這個(gè)參數(shù)是用來(lái)控制XGBoost的正則化部分的。

11)alpha[默認(rèn)1]

  • 權(quán)重的L1正則化項(xiàng)。(和Lasso regression類似)。
  • 可以應(yīng)用在很高維度的情況下,使得算法的速度更快。

12)scale_pos_weight[默認(rèn)1]

  • 在各類別樣本十分不平衡時(shí),把這個(gè)參數(shù)設(shè)定為一個(gè)正值,可以使算法更快收斂。
  • 大于0的取值可以處理類別不平衡的情況。幫助模型更快收斂。

13) Parameter for Linear Booster

lambda_bias

  • 在偏置上的L2正則。缺省值為0(在L1上沒有偏置項(xiàng)的正則,因?yàn)長(zhǎng)1時(shí)偏置不重要)

3 學(xué)習(xí)目標(biāo)參數(shù)

這個(gè)參數(shù)用來(lái)控制理想的優(yōu)化目標(biāo)和每一步結(jié)果的度量方法。

1)objective[默認(rèn)reg:linear]

  • 這個(gè)參數(shù)定義需要被最小化的損失函數(shù)。最常用的值有: 定義學(xué)習(xí)任務(wù)及相應(yīng)的學(xué)習(xí)目標(biāo),可選的目標(biāo)函數(shù)如下:
  • “reg:linear” –線性回歸。
  • “reg:logistic” –邏輯回歸。
  • “binary:logistic” –二分類的邏輯回歸問題,輸出為概率。
  • “binary:logitraw” –二分類的邏輯回歸問題,輸出的結(jié)果為wTx。
  • “count:poisson” –計(jì)數(shù)問題的poisson回歸,輸出結(jié)果為poisson分布。
  • 在poisson回歸中,max_delta_step的缺省值為0.7。(used to safeguard optimization)
  • “multi:softmax” –讓XGBoost采用softmax目標(biāo)函數(shù)處理多分類問題,同時(shí)需要設(shè)置參數(shù)num_class(類別個(gè)數(shù))
  • “multi:softprob” –和softmax一樣,但是輸出的是ndata * nclass的向量,可以將該向量reshape成ndata行nclass列的矩陣。每行數(shù)據(jù)表示樣本所屬于每個(gè)類別的概率。
  • “rank:pairwise” –set XGBoost to do ranking task by minimizing the pairwise loss

2)eval_metric[默認(rèn)值取決于objective參數(shù)的取值]

  • 對(duì)于有效數(shù)據(jù)的度量方法。
  • 對(duì)于回歸問題,默認(rèn)值是rmse,對(duì)于分類問題,默認(rèn)值是error。
  • 典型值有:
  • rmse 均方根誤差
  • mae 平均絕對(duì)誤差
  • logloss 負(fù)對(duì)數(shù)似然函數(shù)值
  • error 二分類錯(cuò)誤率(閾值為0.5)
  • merror 多分類錯(cuò)誤率
  • mlogloss 多分類logloss損失函數(shù)
  • auc 曲線下面積

3)seed(默認(rèn)0)

  • 隨機(jī)數(shù)的種子
  • 設(shè)置它可以復(fù)現(xiàn)隨機(jī)數(shù)據(jù)的結(jié)果,也可以用于調(diào)整參數(shù)
  • 如果你比較習(xí)慣scikit-learn的參數(shù)形式,那么XGBoost的Python 版本也提供了sklearn形式的接口 XGBClassifier。

4)sklearn 參數(shù)對(duì)照

它使用sklearn形式的參數(shù)命名方式,對(duì)應(yīng)關(guān)系如下:

  • 1、eta -> learning_rate
  • 2、lambda -> reg_lambda
  • 3、alpha -> reg_alpha

4.平臺(tái)控制參數(shù) Console Parameters

The following parameters are only used in the console version of xgboost

  • use_buffer [ default=1 ]
    是否為輸入創(chuàng)建二進(jìn)制的緩存文件,緩存文件可以加速計(jì)算。缺省值為1
  • num_round
    boosting迭代計(jì)算次數(shù)。
  • data
    輸入數(shù)據(jù)的路徑
  • test:data
    測(cè)試數(shù)據(jù)的路徑
  • save_period [default=0]
    表示保存第i*save_period次迭代的模型。例如save_period=10表示每隔10迭代計(jì)算XGBoost將會(huì)保存中間結(jié)果,設(shè)置為0表示每次計(jì)算的模型都要保持。
  • task [default=train] options: train, pred, eval, dump
    train:訓(xùn)練模型
    pred:對(duì)測(cè)試數(shù)據(jù)進(jìn)行預(yù)測(cè)
    eval:通過eval[name]=filenam定義評(píng)價(jià)指標(biāo)
    dump:將學(xué)習(xí)模型保存成文本格式
  • model_in [default=NULL]
    指向模型的路徑在test, eval, dump都會(huì)用到,如果在training中定義XGBoost將會(huì)接著輸入模型繼續(xù)訓(xùn)練
  • model_out [default=NULL]
    訓(xùn)練完成后模型的保存路徑,如果沒有定義則會(huì)輸出類似0003.model這樣的結(jié)果,0003是第三次訓(xùn)練的模型結(jié)果。
  • model_dir [default=models]
    輸出模型所保存的路徑。
  • fmap
    feature map, used for dump model
  • name_dump [default=dump.txt]
    name of model dump file
  • name_pred [default=pred.txt]
    預(yù)測(cè)結(jié)果文件
  • pred_margin [default=0]
    輸出預(yù)測(cè)的邊界,而不是轉(zhuǎn)換后的概率

二.xgboost 實(shí)現(xiàn)

本章以優(yōu)惠券推薦數(shù)據(jù)為例對(duì)xgboost結(jié)合skleran與直接采用xgboost進(jìn)行實(shí)現(xiàn)

1.導(dǎo)入相關(guān)包

import pandas as pd, numpy as np from sklearn.model_selection import train_test_split, GridSearchCV from sklearn import metrics import catboost as cb import xgboost as xgb from xgboost.sklearn import XGBClassifier import os import joblib from sklearn.preprocessing import LabelEncoder from collections import defaultdict data=pd.read_excel('car_coupon.xlsx') data.head(5) IDdestinationpassangertoCoupon_GEQ15mintoCoupon_GEQ25mindirection_samedirection_oppgenderagemaritalStatus...BarCoffeeHouseCarryAwayRestaurantLessThan20Restaurant20To50weathertimecouponexpirationY01234
11263No Urgent PlaceFriend(s)0001Male55Widowed...00111Sunny14Coffee House241
20136WorkAlone1010Female26Married partner...00333Sunny7Bar240
14763WorkAlone1001Female55Single...00111Sunny7Coffee House240
12612No Urgent PlaceKid(s)1001Female41Married partner...03333Sunny10Carry out & Take away20
17850No Urgent PlacePartner1001Female31Married partner...11101010Snowy14Coffee House20

5 rows × 23 columns

2.數(shù)據(jù)處理

  • 對(duì)類別數(shù)據(jù)進(jìn)行編碼
d = defaultdict(LabelEncoder) data[['destination', 'passanger','gender','maritalStatus','education', 'occupation', \'weather','coupon' ]]=data[['destination', 'passanger','gender','maritalStatus','education', 'occupation', \'weather','coupon' ]].apply(lambda x: d[x.name].fit_transform(x)) data.head(5) IDdestinationpassangertoCoupon_GEQ15mintoCoupon_GEQ25mindirection_samedirection_oppgenderagemaritalStatus...BarCoffeeHouseCarryAwayRestaurantLessThan20Restaurant20To50weathertimecouponexpirationY01234
112631100011554...001112142241
201362010100261...00333270240
147632010010552...00111272240
126121210010411...03333210120
178501310010311...11101010114220

5 rows × 23 columns

  • 切分訓(xùn)練集與測(cè)試集
train, test, y_train, y_test = train_test_split(data.drop(["Y"], axis=1), data["Y"],random_state=10, test_size=0.3)
  • 注意下 data ,train, test, y_train, y_test的數(shù)據(jù)格式
print(type(data)) print(type(train)) print(type( test)) print(type(y_train)) print(type(y_test)) <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.frame.DataFrame'> <class 'pandas.core.series.Series'> <class 'pandas.core.series.Series'>
  • 撰寫評(píng)價(jià)函數(shù)
def model_eval2(m, train, test):print('train_roc_auc_score:',metrics.roc_auc_score(y_train, m.predict_proba(train)[:, 1]))print('test_roc_auc_score:',metrics.roc_auc_score(y_test, m.predict_proba(test)[:, 1]))print('train_accuracy_score:',metrics.accuracy_score(y_train, m.predict(train)))print('test_accuracy_score:',metrics.accuracy_score(y_test, m.predict(test)))print('train_precision_score:',metrics.precision_score(y_train, m.predict(train)))print('test__precision_score:',metrics.precision_score(y_test, m.predict(test)))print('train_recall_score:',metrics.recall_score(y_train, m.predict(train)))print('test_recall_score:',metrics.recall_score(y_test, m.predict(test)))print('train_f1_score:',metrics.f1_score(y_train, m.predict(train)))print('test_f1_score:',metrics.f1_score(y_test, m.predict(test)))

3.結(jié)合sklearn的xgboot模型

step01-擬合模型

from xgboost.sklearn import XGBClassifier xgboost_model = XGBClassifier() eval_set = [(test.values, y_test.values)] #擬合模型 xgboost_model.fit(train.values, y_train.values, early_stopping_rounds=300, eval_metric="logloss", # 損失函數(shù)的類型,分類一般都是用對(duì)數(shù)作為損失函數(shù)eval_set=eval_set,verbose=False) D:\dprograme\Anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarning: `eval_metric` in `fit` method is deprecated for better compatibility with scikit-learn, use `eval_metric` in constructor or`set_params` instead.warnings.warn( D:\dprograme\Anaconda3\lib\site-packages\xgboost\sklearn.py:793: UserWarning: `early_stopping_rounds` in `fit` method is deprecated for better compatibility with scikit-learn, use `early_stopping_rounds` in constructor or`set_params` instead.warnings.warn( XGBClassifier(base_score=0.5, booster='gbtree', callbacks=None, colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, gamma=0, gpu_id=-1, grow_policy=&#x27;depthwise&#x27;,importance_type=None, interaction_constraints=&#x27;&#x27;,learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,missing=nan, monotone_constraints=&#x27;()&#x27;, n_estimators=100,n_jobs=0, num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, ...)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">XGBClassifier</label><div class="sk-toggleable__content"><pre>XGBClassifier(base_score=0.5, booster=&#x27;gbtree&#x27;, callbacks=None,colsample_bylevel=1, colsample_bynode=1, colsample_bytree=1,early_stopping_rounds=None, enable_categorical=False,eval_metric=None, gamma=0, gpu_id=-1, grow_policy=&#x27;depthwise&#x27;,importance_type=None, interaction_constraints=&#x27;&#x27;,learning_rate=0.300000012, max_bin=256, max_cat_to_onehot=4,max_delta_step=0, max_depth=6, max_leaves=0, min_child_weight=1,missing=nan, monotone_constraints=&#x27;()&#x27;, n_estimators=100,n_jobs=0, num_parallel_tree=1, predictor=&#x27;auto&#x27;, random_state=0,reg_alpha=0, reg_lambda=1, ...)</pre></div></div></div></div></div>

step02-評(píng)價(jià)模型

model_eval2(xgboost_model, train.values, test.values) train_roc_auc_score: 0.890295988831706 test_roc_auc_score: 0.7178983466569767 train_accuracy_score: 0.8007142857142857 test_accuracy_score: 0.6683333333333333 train_precision_score: 0.7965116279069767 test__precision_score: 0.704225352112676 train_recall_score: 0.8681875792141952 test_recall_score: 0.7267441860465116 train_f1_score: 0.8308065494238933 test_f1_score: 0.7153075822603719

step03-利用模型預(yù)測(cè)

  • xgboost_model.predict 預(yù)測(cè)結(jié)果是0或1的int型
  • xgboost_model.predict_proba預(yù)測(cè)結(jié)果是0到1之間的float型
y_test_pred = xgboost_model.predict( test.values ) y_trian_prod = xgboost_model.predict_proba( train.values )

step04-保存和調(diào)用模型

joblib.dump(xgboost_model , r'D:\Ensemble_Learning\xgboostinfo\xgboostsklearnsingle.model') load_model=joblib.load(r'D:\Ensemble_Learning\xgboostinfo\xgboostsklearnsingle.model') load_model.predict( test.values ) array([0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1,1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1,1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0,1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1,0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1,0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0,1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0,1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1,1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0,1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1,1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1,1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1,1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0,0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1,1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1,0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1,1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0,1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,0, 1, 1, 0, 1, 0])

注意點(diǎn)

  • 上面xgboost_model.fit傳入的是train.values和y_train.values,數(shù)據(jù)類型為numpy.ndarray
  • 上面* xgboost_model.predict與xgboost_model.predict_proba傳入的數(shù)據(jù)類型為numpy.ndarray
print(type(data.values)) print(type(train.values)) print(type( test.values)) print(type(y_train.values)) print(type(y_test.values)) <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'> <class 'numpy.ndarray'>

4.直接采用xgboost的模型

step-01 構(gòu)建參數(shù)

params={'alpha': 0.09,'booster': 'gbtree','colsample_bylevel': 0.4,'colsample_bytree': 0.7,'eval_metric': 'logloss','gamma': 0.85,'learning_rate': 0.1,'max_depth': 7,'min_child_weight': 20,'n_estimator': 40,'objective': 'binary:logistic','reg_lambda': 0.1,'seed': 1,'subsample': 0.6}

step-02 處理數(shù)據(jù)

dtrain = xgb.DMatrix(train, label=y_train,feature_names=list(train.columns)) dtest = xgb.DMatrix(test) validation = xgb.DMatrix(test,y_test) watchlist = [(validation,'train')]

step-03 擬合模型

model = xgb.train(params,dtrain,num_boost_round= 2000, # 迭代的次數(shù),及弱學(xué)習(xí)器的個(gè)數(shù)evals= watchlist) [21:06:30] WARNING: C:/Users/administrator/workspace/xgboost-win64_release_1.6.0/src/learner.cc:627: Parameters: { "n_estimator" } might not be used.This could be a false alarm, with some parameters getting used by language bindings butthen being mistakenly passed down to XGBoost core, or some parameter actually being usedbut getting flagged wrongly here. Please open an issue if you find any such cases.[0] train-logloss:0.68835 [1] train-logloss:0.68565 [2] train-logloss:0.68298 [3] train-logloss:0.67752 [4] train-logloss:0.67465 [5] train-logloss:0.67235 [6] train-logloss:0.66660 [7] train-logloss:0.66280 [8] train-logloss:0.66026 [9] train-logloss:0.65894 [10] train-logloss:0.65901 [11] train-logloss:0.65892 [12] train-logloss:0.65751 [13] train-logloss:0.65512 [14] train-logloss:0.65389 [15] train-logloss:0.65229 [16] train-logloss:0.64792 [17] train-logloss:0.64436 [18] train-logloss:0.64343 [19] train-logloss:0.64374 [20] train-logloss:0.64223 [21] train-logloss:0.63890 [22] train-logloss:0.63934 [23] train-logloss:0.63531 [24] train-logloss:0.63163 [25] train-logloss:0.63014 [26] train-logloss:0.62985 [27] train-logloss:0.62939 [28] train-logloss:0.62872 [29] train-logloss:0.62832 [30] train-logloss:0.62718 [31] train-logloss:0.62531 [32] train-logloss:0.62274 [33] train-logloss:0.62034 [34] train-logloss:0.61853 [35] train-logloss:0.61825 [36] train-logloss:0.61698 [37] train-logloss:0.61518 [38] train-logloss:0.61462 [39] train-logloss:0.61375 [40] train-logloss:0.61137 [41] train-logloss:0.61013 [42] train-logloss:0.61013 [43] train-logloss:0.61091 [44] train-logloss:0.60978 [45] train-logloss:0.60987 [46] train-logloss:0.60909 [47] train-logloss:0.60926 [48] train-logloss:0.60889 [49] train-logloss:0.60833 [50] train-logloss:0.60849 [51] train-logloss:0.60889 [52] train-logloss:0.60871 [53] train-logloss:0.60861 [54] train-logloss:0.60935 [55] train-logloss:0.60868 [56] train-logloss:0.60836 [57] train-logloss:0.60862 [58] train-logloss:0.60933 [59] train-logloss:0.60926 [60] train-logloss:0.60929 [61] train-logloss:0.60936 [62] train-logloss:0.60876 [63] train-logloss:0.60862 [64] train-logloss:0.60866 [65] train-logloss:0.60921 [66] train-logloss:0.60946 [67] train-logloss:0.60896 [68] train-logloss:0.60919 [69] train-logloss:0.60852 [70] train-logloss:0.60873 [71] train-logloss:0.60902 [72] train-logloss:0.60903 [73] train-logloss:0.60881 [74] train-logloss:0.60862 [75] train-logloss:0.60658 [76] train-logloss:0.60641 [77] train-logloss:0.60657 [78] train-logloss:0.60661 [79] train-logloss:0.60736 [80] train-logloss:0.60740 [81] train-logloss:0.60726 [82] train-logloss:0.60717 [83] train-logloss:0.60745 [84] train-logloss:0.60663 [85] train-logloss:0.60681 [86] train-logloss:0.60718 [87] train-logloss:0.60616 [88] train-logloss:0.60682 [89] train-logloss:0.60632 [90] train-logloss:0.60609 [91] train-logloss:0.60548 [92] train-logloss:0.60544 [93] train-logloss:0.60522 [94] train-logloss:0.60536 [95] train-logloss:0.60596 [96] train-logloss:0.60680 [97] train-logloss:0.60665 [98] train-logloss:0.60742 [99] train-logloss:0.60716 [100] train-logloss:0.60704 [101] train-logloss:0.60628 [102] train-logloss:0.60648 [103] train-logloss:0.60658 [104] train-logloss:0.60748 [105] train-logloss:0.60746 [106] train-logloss:0.60750 [107] train-logloss:0.60736 [108] train-logloss:0.60640 [109] train-logloss:0.60703 [110] train-logloss:0.60651 [111] train-logloss:0.60647 [112] train-logloss:0.60556 [113] train-logloss:0.60544 [114] train-logloss:0.60372 [115] train-logloss:0.60246 [116] train-logloss:0.60285 [117] train-logloss:0.60266 [118] train-logloss:0.60286 [119] train-logloss:0.60331 [120] train-logloss:0.60429 [121] train-logloss:0.60428 [122] train-logloss:0.60386 [123] train-logloss:0.60349 [124] train-logloss:0.60357 [125] train-logloss:0.60228 [126] train-logloss:0.60228 [127] train-logloss:0.60304 [128] train-logloss:0.60288 [129] train-logloss:0.60234 [130] train-logloss:0.60196 [131] train-logloss:0.60220 [132] train-logloss:0.60163 [133] train-logloss:0.60118 [134] train-logloss:0.60188 [135] train-logloss:0.60089 [136] train-logloss:0.60052 [137] train-logloss:0.60121 [138] train-logloss:0.60029 [139] train-logloss:0.59980 [140] train-logloss:0.60066 [141] train-logloss:0.60037 [142] train-logloss:0.60084 [143] train-logloss:0.60068 [144] train-logloss:0.60141 [145] train-logloss:0.60053 [146] train-logloss:0.60028 [147] train-logloss:0.60044 [148] train-logloss:0.59957 [149] train-logloss:0.60004 [150] train-logloss:0.59962 [151] train-logloss:0.59961 [152] train-logloss:0.59938 [153] train-logloss:0.59880 [154] train-logloss:0.59873 [155] train-logloss:0.59878 [156] train-logloss:0.59905 [157] train-logloss:0.59885 [158] train-logloss:0.59913 [159] train-logloss:0.59885 [160] train-logloss:0.59845 [161] train-logloss:0.59908 [162] train-logloss:0.59909 [163] train-logloss:0.59804 [164] train-logloss:0.59788 [165] train-logloss:0.59796 [166] train-logloss:0.59915 [167] train-logloss:0.59874 [168] train-logloss:0.59868 [169] train-logloss:0.59866 [170] train-logloss:0.59915 [171] train-logloss:0.59945 [172] train-logloss:0.59978 [173] train-logloss:0.59945 [174] train-logloss:0.59956 [175] train-logloss:0.59835 [176] train-logloss:0.59840 [177] train-logloss:0.59836 [178] train-logloss:0.59825 [179] train-logloss:0.59791 [180] train-logloss:0.59836 [181] train-logloss:0.59813 [182] train-logloss:0.59832 [183] train-logloss:0.59790 [184] train-logloss:0.59847 [185] train-logloss:0.59873 [186] train-logloss:0.59886 [187] train-logloss:0.59942 [188] train-logloss:0.59865 [189] train-logloss:0.59852 [190] train-logloss:0.59852 [191] train-logloss:0.59848 [192] train-logloss:0.59884 [193] train-logloss:0.59845 [194] train-logloss:0.59827 [195] train-logloss:0.59773 [196] train-logloss:0.59742 [197] train-logloss:0.59782 [198] train-logloss:0.59742 [199] train-logloss:0.59765 [200] train-logloss:0.59699 [201] train-logloss:0.59748 [202] train-logloss:0.59788 [203] train-logloss:0.59799 [204] train-logloss:0.59756 [205] train-logloss:0.59685 [206] train-logloss:0.59746 [207] train-logloss:0.59756 [208] train-logloss:0.59718 [209] train-logloss:0.59742 [210] train-logloss:0.59784 [211] train-logloss:0.59826 [212] train-logloss:0.59800 [213] train-logloss:0.59736 [214] train-logloss:0.59694 [215] train-logloss:0.59707 [216] train-logloss:0.59706 [217] train-logloss:0.59695 [218] train-logloss:0.59711 [219] train-logloss:0.59697 [220] train-logloss:0.59773 [221] train-logloss:0.59839 [222] train-logloss:0.59860 [223] train-logloss:0.59783 [224] train-logloss:0.59776 [225] train-logloss:0.59783 [226] train-logloss:0.59780 [227] train-logloss:0.59815 [228] train-logloss:0.59765 [229] train-logloss:0.59831 [230] train-logloss:0.59830 [231] train-logloss:0.59818 [232] train-logloss:0.59829 [233] train-logloss:0.59806 [234] train-logloss:0.59734 [235] train-logloss:0.59763 [236] train-logloss:0.59748 [237] train-logloss:0.59630 [238] train-logloss:0.59615 [239] train-logloss:0.59571 [240] train-logloss:0.59605 [241] train-logloss:0.59521 [242] train-logloss:0.59485 [243] train-logloss:0.59427 [244] train-logloss:0.59476 [245] train-logloss:0.59555 [246] train-logloss:0.59568 [247] train-logloss:0.59555 [248] train-logloss:0.59653 [249] train-logloss:0.59710 [250] train-logloss:0.59722 [251] train-logloss:0.59678 [252] train-logloss:0.59689 [253] train-logloss:0.59721 [254] train-logloss:0.59773 [255] train-logloss:0.59789 [256] train-logloss:0.59814 [257] train-logloss:0.59722 [258] train-logloss:0.59697 [259] train-logloss:0.59736 [260] train-logloss:0.59678 [261] train-logloss:0.59661 [262] train-logloss:0.59701 [263] train-logloss:0.59634 [264] train-logloss:0.59628 [265] train-logloss:0.59599 [266] train-logloss:0.59570 [267] train-logloss:0.59623 [268] train-logloss:0.59656 [269] train-logloss:0.59578 [270] train-logloss:0.59617 [271] train-logloss:0.59549 [272] train-logloss:0.59521 [273] train-logloss:0.59510 [274] train-logloss:0.59484 [275] train-logloss:0.59461 [276] train-logloss:0.59496 [277] train-logloss:0.59509 [278] train-logloss:0.59511 [279] train-logloss:0.59475 [280] train-logloss:0.59425 [281] train-logloss:0.59337 [282] train-logloss:0.59408 [283] train-logloss:0.59440 [284] train-logloss:0.59461 [285] train-logloss:0.59478 [286] train-logloss:0.59540 [287] train-logloss:0.59601 [288] train-logloss:0.59565 [289] train-logloss:0.59641 [290] train-logloss:0.59619 [291] train-logloss:0.59652 [292] train-logloss:0.59666 [293] train-logloss:0.59647 [294] train-logloss:0.59690 [295] train-logloss:0.59681 [296] train-logloss:0.59674 [297] train-logloss:0.59613 [298] train-logloss:0.59633 [299] train-logloss:0.59615 [300] train-logloss:0.59657 [301] train-logloss:0.59685 [302] train-logloss:0.59679 [303] train-logloss:0.59676 [304] train-logloss:0.59651 [305] train-logloss:0.59599 [306] train-logloss:0.59591 [307] train-logloss:0.59589 [308] train-logloss:0.59606 [309] train-logloss:0.59680 [310] train-logloss:0.59755 [311] train-logloss:0.59776 [312] train-logloss:0.59839 [313] train-logloss:0.59982 [314] train-logloss:0.60061 [315] train-logloss:0.60068 [316] train-logloss:0.60074 [317] train-logloss:0.60003 [318] train-logloss:0.59996 [319] train-logloss:0.59952 [320] train-logloss:0.59922 [321] train-logloss:0.59896 [322] train-logloss:0.59843 [323] train-logloss:0.59792 [324] train-logloss:0.59771 [325] train-logloss:0.59799 [326] train-logloss:0.59850 [327] train-logloss:0.59840 [328] train-logloss:0.59858 [329] train-logloss:0.59830 [330] train-logloss:0.59859 [331] train-logloss:0.59892 [332] train-logloss:0.59962 [333] train-logloss:0.59948 [334] train-logloss:0.59957 [335] train-logloss:0.59921 [336] train-logloss:0.59992 [337] train-logloss:0.60011 [338] train-logloss:0.60025 [339] train-logloss:0.60013 [340] train-logloss:0.59981 [341] train-logloss:0.59978 [342] train-logloss:0.59933 [343] train-logloss:0.59936 [344] train-logloss:0.59835 [345] train-logloss:0.59806 [346] train-logloss:0.59652 [347] train-logloss:0.59686 [348] train-logloss:0.59685 [349] train-logloss:0.59660 [350] train-logloss:0.59550 [351] train-logloss:0.59544 [352] train-logloss:0.59591 [353] train-logloss:0.59621 [354] train-logloss:0.59615 [355] train-logloss:0.59651 [356] train-logloss:0.59627 [357] train-logloss:0.59743 [358] train-logloss:0.59777 [359] train-logloss:0.59810 [360] train-logloss:0.59777 [361] train-logloss:0.59743 [362] train-logloss:0.59659 [363] train-logloss:0.59644 [364] train-logloss:0.59640 [365] train-logloss:0.59634 [366] train-logloss:0.59636 [367] train-logloss:0.59684 [368] train-logloss:0.59731 [369] train-logloss:0.59742 [370] train-logloss:0.59739 [371] train-logloss:0.59784 [372] train-logloss:0.59729 [373] train-logloss:0.59773 [374] train-logloss:0.59768 [375] train-logloss:0.59806 [376] train-logloss:0.59811 [377] train-logloss:0.59777 [378] train-logloss:0.59874 [379] train-logloss:0.59870 [380] train-logloss:0.59868 [381] train-logloss:0.59937 [382] train-logloss:0.59917 [383] train-logloss:0.59956 [384] train-logloss:0.59952 [385] train-logloss:0.59952 [386] train-logloss:0.59907 [387] train-logloss:0.59934 [388] train-logloss:0.59920 [389] train-logloss:0.59938 [390] train-logloss:0.59972 [391] train-logloss:0.59959 [392] train-logloss:0.59966 [393] train-logloss:0.59993 [394] train-logloss:0.59983 [395] train-logloss:0.60023 [396] train-logloss:0.60025 [397] train-logloss:0.60012 [398] train-logloss:0.59959 [399] train-logloss:0.59971 [400] train-logloss:0.59964 [401] train-logloss:0.59952 [402] train-logloss:0.59944 [403] train-logloss:0.59939 [404] train-logloss:0.59934 [405] train-logloss:0.59978 [406] train-logloss:0.59954 [407] train-logloss:0.59956 [408] train-logloss:0.59985 [409] train-logloss:0.59924 [410] train-logloss:0.59999 [411] train-logloss:0.60040 [412] train-logloss:0.60098 [413] train-logloss:0.60030 [414] train-logloss:0.60028 [415] train-logloss:0.59985 [416] train-logloss:0.60055 [417] train-logloss:0.60067 [418] train-logloss:0.60093 [419] train-logloss:0.60046 [420] train-logloss:0.60099 [421] train-logloss:0.60128 [422] train-logloss:0.60063 [423] train-logloss:0.60044 [424] train-logloss:0.60062 [425] train-logloss:0.60075 [426] train-logloss:0.60039 [427] train-logloss:0.60039 [428] train-logloss:0.60120 [429] train-logloss:0.60134 [430] train-logloss:0.60121 [431] train-logloss:0.60132 [432] train-logloss:0.60147 [433] train-logloss:0.60110 [434] train-logloss:0.60113 [435] train-logloss:0.60103 [436] train-logloss:0.60065 [437] train-logloss:0.60031 [438] train-logloss:0.60043 [439] train-logloss:0.60048 [440] train-logloss:0.60005 [441] train-logloss:0.59975 [442] train-logloss:0.59958 [443] train-logloss:0.59946 [444] train-logloss:0.59932 [445] train-logloss:0.59964 [446] train-logloss:0.59884 [447] train-logloss:0.59847 [448] train-logloss:0.59863 [449] train-logloss:0.59869 [450] train-logloss:0.59856 [451] train-logloss:0.59894 [452] train-logloss:0.59901 [453] train-logloss:0.59873 [454] train-logloss:0.59953 [455] train-logloss:0.59953 [456] train-logloss:0.59972 [457] train-logloss:0.59962 [458] train-logloss:0.59994 [459] train-logloss:0.60006 [460] train-logloss:0.60028 [461] train-logloss:0.60110 [462] train-logloss:0.60111 [463] train-logloss:0.60122 [464] train-logloss:0.60074 [465] train-logloss:0.60093 [466] train-logloss:0.60080 [467] train-logloss:0.60120 [468] train-logloss:0.60122 [469] train-logloss:0.60124 [470] train-logloss:0.60122 [471] train-logloss:0.60116 [472] train-logloss:0.60101 [473] train-logloss:0.60090 [474] train-logloss:0.60111 [475] train-logloss:0.60109 [476] train-logloss:0.60151 [477] train-logloss:0.60201 [478] train-logloss:0.60160 [479] train-logloss:0.60101 [480] train-logloss:0.60132 [481] train-logloss:0.60067 [482] train-logloss:0.60054 [483] train-logloss:0.60041 [484] train-logloss:0.60017 [485] train-logloss:0.60025 [486] train-logloss:0.60024 [487] train-logloss:0.59967 [488] train-logloss:0.59935 [489] train-logloss:0.59868 [490] train-logloss:0.59907 [491] train-logloss:0.59912 [492] train-logloss:0.59919 [493] train-logloss:0.59890 [494] train-logloss:0.59955 [495] train-logloss:0.59947 [496] train-logloss:0.59907 [497] train-logloss:0.59937 [498] train-logloss:0.59933 [499] train-logloss:0.59960 [500] train-logloss:0.60029 [501] train-logloss:0.60047 [502] train-logloss:0.60013 [503] train-logloss:0.59989 [504] train-logloss:0.60059 [505] train-logloss:0.60072 [506] train-logloss:0.60102 [507] train-logloss:0.60086 [508] train-logloss:0.60060 [509] train-logloss:0.60126 [510] train-logloss:0.60112 [511] train-logloss:0.60126 [512] train-logloss:0.60129 [513] train-logloss:0.60059 [514] train-logloss:0.59989 [515] train-logloss:0.60005 [516] train-logloss:0.59968 [517] train-logloss:0.60008 [518] train-logloss:0.60084 [519] train-logloss:0.60062 [520] train-logloss:0.60111 [521] train-logloss:0.60070 [522] train-logloss:0.60063 [523] train-logloss:0.60065 [524] train-logloss:0.60044 [525] train-logloss:0.60053 [526] train-logloss:0.60099 [527] train-logloss:0.60125 [528] train-logloss:0.60105 [529] train-logloss:0.60155 [530] train-logloss:0.60176 [531] train-logloss:0.60249 [532] train-logloss:0.60304 [533] train-logloss:0.60372 [534] train-logloss:0.60326 [535] train-logloss:0.60391 [536] train-logloss:0.60371 [537] train-logloss:0.60472 [538] train-logloss:0.60431 [539] train-logloss:0.60337 [540] train-logloss:0.60355 [541] train-logloss:0.60365 [542] train-logloss:0.60295 [543] train-logloss:0.60268 [544] train-logloss:0.60312 [545] train-logloss:0.60293 [546] train-logloss:0.60275 [547] train-logloss:0.60344 [548] train-logloss:0.60334 [549] train-logloss:0.60411 [550] train-logloss:0.60460 [551] train-logloss:0.60409 [552] train-logloss:0.60423 [553] train-logloss:0.60366 [554] train-logloss:0.60341 [555] train-logloss:0.60364 [556] train-logloss:0.60365 [557] train-logloss:0.60316 [558] train-logloss:0.60353 [559] train-logloss:0.60382 [560] train-logloss:0.60396 [561] train-logloss:0.60426 [562] train-logloss:0.60465 [563] train-logloss:0.60500 [564] train-logloss:0.60502 [565] train-logloss:0.60465 [566] train-logloss:0.60496 [567] train-logloss:0.60545 [568] train-logloss:0.60523 [569] train-logloss:0.60451 [570] train-logloss:0.60424 [571] train-logloss:0.60479 [572] train-logloss:0.60501 [573] train-logloss:0.60472 [574] train-logloss:0.60399 [575] train-logloss:0.60399 [576] train-logloss:0.60339 [577] train-logloss:0.60306 [578] train-logloss:0.60286 [579] train-logloss:0.60302 [580] train-logloss:0.60266 [581] train-logloss:0.60206 [582] train-logloss:0.60216 [583] train-logloss:0.60172 [584] train-logloss:0.60186 [585] train-logloss:0.60173 [586] train-logloss:0.60159 [587] train-logloss:0.60130 [588] train-logloss:0.60173 [589] train-logloss:0.60182 [590] train-logloss:0.60176 [591] train-logloss:0.60224 [592] train-logloss:0.60242 [593] train-logloss:0.60209 [594] train-logloss:0.60148 [595] train-logloss:0.60173 [596] train-logloss:0.60187 [597] train-logloss:0.60157 [598] train-logloss:0.60219 [599] train-logloss:0.60211 [600] train-logloss:0.60197 [601] train-logloss:0.60217 [602] train-logloss:0.60158 [603] train-logloss:0.60171 [604] train-logloss:0.60143 [605] train-logloss:0.60067 [606] train-logloss:0.60052 [607] train-logloss:0.60008 [608] train-logloss:0.59992 [609] train-logloss:0.60023 [610] train-logloss:0.60063 [611] train-logloss:0.60079 [612] train-logloss:0.60056 [613] train-logloss:0.60045 [614] train-logloss:0.60035 [615] train-logloss:0.60040 [616] train-logloss:0.60038 [617] train-logloss:0.60047 [618] train-logloss:0.60006 [619] train-logloss:0.60058 [620] train-logloss:0.60048 [621] train-logloss:0.60130 [622] train-logloss:0.60134 [623] train-logloss:0.60108 [624] train-logloss:0.60107 [625] train-logloss:0.60103 [626] train-logloss:0.60110 [627] train-logloss:0.60111 [628] train-logloss:0.60118 [629] train-logloss:0.60107 [630] train-logloss:0.60026 [631] train-logloss:0.60035 [632] train-logloss:0.60089 [633] train-logloss:0.60139 [634] train-logloss:0.60136 [635] train-logloss:0.60107 [636] train-logloss:0.60094 [637] train-logloss:0.60075 [638] train-logloss:0.60102 [639] train-logloss:0.60164 [640] train-logloss:0.60075 [641] train-logloss:0.60064 [642] train-logloss:0.60051 [643] train-logloss:0.60076 [644] train-logloss:0.60053 [645] train-logloss:0.60062 [646] train-logloss:0.60055 [647] train-logloss:0.60115 [648] train-logloss:0.60093 [649] train-logloss:0.60052 [650] train-logloss:0.60054 [651] train-logloss:0.60064 [652] train-logloss:0.60126 [653] train-logloss:0.60113 [654] train-logloss:0.60096 [655] train-logloss:0.60108 [656] train-logloss:0.60129 [657] train-logloss:0.60122 [658] train-logloss:0.60162 [659] train-logloss:0.60155 [660] train-logloss:0.60163 [661] train-logloss:0.60166 [662] train-logloss:0.60170 [663] train-logloss:0.60317 [664] train-logloss:0.60358 [665] train-logloss:0.60430 [666] train-logloss:0.60406 [667] train-logloss:0.60419 [668] train-logloss:0.60394 [669] train-logloss:0.60423 [670] train-logloss:0.60479 [671] train-logloss:0.60492 [672] train-logloss:0.60493 [673] train-logloss:0.60458 [674] train-logloss:0.60413 [675] train-logloss:0.60381 [676] train-logloss:0.60380 [677] train-logloss:0.60329 [678] train-logloss:0.60327 [679] train-logloss:0.60334 [680] train-logloss:0.60352 [681] train-logloss:0.60370 [682] train-logloss:0.60361 [683] train-logloss:0.60389 [684] train-logloss:0.60361 [685] train-logloss:0.60419 [686] train-logloss:0.60502 [687] train-logloss:0.60500 [688] train-logloss:0.60507 [689] train-logloss:0.60466 [690] train-logloss:0.60461 [691] train-logloss:0.60461 [692] train-logloss:0.60505 [693] train-logloss:0.60527 [694] train-logloss:0.60532 [695] train-logloss:0.60534 [696] train-logloss:0.60565 [697] train-logloss:0.60592 [698] train-logloss:0.60541 [699] train-logloss:0.60534 [700] train-logloss:0.60509 [701] train-logloss:0.60491 [702] train-logloss:0.60503 [703] train-logloss:0.60507 [704] train-logloss:0.60564 [705] train-logloss:0.60548 [706] train-logloss:0.60611 [707] train-logloss:0.60603 [708] train-logloss:0.60553 [709] train-logloss:0.60522 [710] train-logloss:0.60433 [711] train-logloss:0.60431 [712] train-logloss:0.60441 [713] train-logloss:0.60433 [714] train-logloss:0.60479 [715] train-logloss:0.60464 [716] train-logloss:0.60522 [717] train-logloss:0.60565 [718] train-logloss:0.60521 [719] train-logloss:0.60472 [720] train-logloss:0.60502 [721] train-logloss:0.60541 [722] train-logloss:0.60551 [723] train-logloss:0.60531 [724] train-logloss:0.60464 [725] train-logloss:0.60453 [726] train-logloss:0.60449 [727] train-logloss:0.60426 [728] train-logloss:0.60378 [729] train-logloss:0.60523 [730] train-logloss:0.60574 [731] train-logloss:0.60550 [732] train-logloss:0.60547 [733] train-logloss:0.60580 [734] train-logloss:0.60546 [735] train-logloss:0.60541 [736] train-logloss:0.60566 [737] train-logloss:0.60568 [738] train-logloss:0.60556 [739] train-logloss:0.60546 [740] train-logloss:0.60533 [741] train-logloss:0.60570 [742] train-logloss:0.60580 [743] train-logloss:0.60562 [744] train-logloss:0.60563 [745] train-logloss:0.60553 [746] train-logloss:0.60570 [747] train-logloss:0.60584 [748] train-logloss:0.60632 [749] train-logloss:0.60628 [750] train-logloss:0.60637 [751] train-logloss:0.60680 [752] train-logloss:0.60716 [753] train-logloss:0.60663 [754] train-logloss:0.60630 [755] train-logloss:0.60617 [756] train-logloss:0.60614 [757] train-logloss:0.60527 [758] train-logloss:0.60568 [759] train-logloss:0.60560 [760] train-logloss:0.60595 [761] train-logloss:0.60631 [762] train-logloss:0.60588 [763] train-logloss:0.60584 [764] train-logloss:0.60627 [765] train-logloss:0.60617 [766] train-logloss:0.60665 [767] train-logloss:0.60641 [768] train-logloss:0.60655 [769] train-logloss:0.60689 [770] train-logloss:0.60710 [771] train-logloss:0.60707 [772] train-logloss:0.60664 [773] train-logloss:0.60689 [774] train-logloss:0.60732 [775] train-logloss:0.60677 [776] train-logloss:0.60677 [777] train-logloss:0.60719 [778] train-logloss:0.60771 [779] train-logloss:0.60774 [780] train-logloss:0.60803 [781] train-logloss:0.60886 [782] train-logloss:0.60919 [783] train-logloss:0.60931 [784] train-logloss:0.60956 [785] train-logloss:0.60928 [786] train-logloss:0.60890 [787] train-logloss:0.60871 [788] train-logloss:0.60884 [789] train-logloss:0.60840 [790] train-logloss:0.60815 [791] train-logloss:0.60824 [792] train-logloss:0.60808 [793] train-logloss:0.60843 [794] train-logloss:0.60818 [795] train-logloss:0.60906 [796] train-logloss:0.60931 [797] train-logloss:0.60894 [798] train-logloss:0.60874 [799] train-logloss:0.60895 [800] train-logloss:0.60818 [801] train-logloss:0.60806 [802] train-logloss:0.60856 [803] train-logloss:0.60939 [804] train-logloss:0.60937 [805] train-logloss:0.60924 [806] train-logloss:0.60880 [807] train-logloss:0.60893 [808] train-logloss:0.60851 [809] train-logloss:0.60872 [810] train-logloss:0.60823 [811] train-logloss:0.60924 [812] train-logloss:0.60916 [813] train-logloss:0.60913 [814] train-logloss:0.60906 [815] train-logloss:0.60876 [816] train-logloss:0.60875 [817] train-logloss:0.60929 [818] train-logloss:0.60952 [819] train-logloss:0.60933 [820] train-logloss:0.60891 [821] train-logloss:0.60856 [822] train-logloss:0.60921 [823] train-logloss:0.60961 [824] train-logloss:0.60921 [825] train-logloss:0.60899 [826] train-logloss:0.60953 [827] train-logloss:0.61011 [828] train-logloss:0.60985 [829] train-logloss:0.60952 [830] train-logloss:0.60889 [831] train-logloss:0.60909 [832] train-logloss:0.60925 [833] train-logloss:0.60953 [834] train-logloss:0.60918 [835] train-logloss:0.60896 [836] train-logloss:0.60951 [837] train-logloss:0.60939 [838] train-logloss:0.60935 [839] train-logloss:0.60904 [840] train-logloss:0.60951 [841] train-logloss:0.61017 [842] train-logloss:0.61034 [843] train-logloss:0.61009 [844] train-logloss:0.61010 [845] train-logloss:0.61063 [846] train-logloss:0.61112 [847] train-logloss:0.61078 [848] train-logloss:0.61036 [849] train-logloss:0.61058 [850] train-logloss:0.61066 [851] train-logloss:0.61041 [852] train-logloss:0.61029 [853] train-logloss:0.60977 [854] train-logloss:0.60990 [855] train-logloss:0.60954 [856] train-logloss:0.60964 [857] train-logloss:0.60979 [858] train-logloss:0.60995 [859] train-logloss:0.60974 [860] train-logloss:0.60945 [861] train-logloss:0.60979 [862] train-logloss:0.61024 [863] train-logloss:0.61075 [864] train-logloss:0.61087 [865] train-logloss:0.61062 [866] train-logloss:0.61108 [867] train-logloss:0.61132 [868] train-logloss:0.61127 [869] train-logloss:0.61123 [870] train-logloss:0.61163 [871] train-logloss:0.61160 [872] train-logloss:0.61153 [873] train-logloss:0.61156 [874] train-logloss:0.61207 [875] train-logloss:0.61186 [876] train-logloss:0.61301 [877] train-logloss:0.61300 [878] train-logloss:0.61276 [879] train-logloss:0.61250 [880] train-logloss:0.61269 [881] train-logloss:0.61302 [882] train-logloss:0.61330 [883] train-logloss:0.61256 [884] train-logloss:0.61219 [885] train-logloss:0.61190 [886] train-logloss:0.61175 [887] train-logloss:0.61211 [888] train-logloss:0.61195 [889] train-logloss:0.61177 [890] train-logloss:0.61180 [891] train-logloss:0.61172 [892] train-logloss:0.61242 [893] train-logloss:0.61320 [894] train-logloss:0.61337 [895] train-logloss:0.61354 [896] train-logloss:0.61354 [897] train-logloss:0.61361 [898] train-logloss:0.61390 [899] train-logloss:0.61390 [900] train-logloss:0.61439 [901] train-logloss:0.61473 [902] train-logloss:0.61455 [903] train-logloss:0.61482 [904] train-logloss:0.61491 [905] train-logloss:0.61608 [906] train-logloss:0.61604 [907] train-logloss:0.61654 [908] train-logloss:0.61628 [909] train-logloss:0.61609 [910] train-logloss:0.61661 [911] train-logloss:0.61665 [912] train-logloss:0.61649 [913] train-logloss:0.61661 [914] train-logloss:0.61669 [915] train-logloss:0.61661 [916] train-logloss:0.61669 [917] train-logloss:0.61610 [918] train-logloss:0.61622 [919] train-logloss:0.61678 [920] train-logloss:0.61674 [921] train-logloss:0.61652 [922] train-logloss:0.61651 [923] train-logloss:0.61610 [924] train-logloss:0.61625 [925] train-logloss:0.61607 [926] train-logloss:0.61634 [927] train-logloss:0.61619 [928] train-logloss:0.61594 [929] train-logloss:0.61565 [930] train-logloss:0.61541 [931] train-logloss:0.61557 [932] train-logloss:0.61549 [933] train-logloss:0.61504 [934] train-logloss:0.61500 [935] train-logloss:0.61530 [936] train-logloss:0.61608 [937] train-logloss:0.61571 [938] train-logloss:0.61553 [939] train-logloss:0.61567 [940] train-logloss:0.61549 [941] train-logloss:0.61562 [942] train-logloss:0.61594 [943] train-logloss:0.61611 [944] train-logloss:0.61579 [945] train-logloss:0.61624 [946] train-logloss:0.61548 [947] train-logloss:0.61579 [948] train-logloss:0.61570 [949] train-logloss:0.61623 [950] train-logloss:0.61624 [951] train-logloss:0.61583 [952] train-logloss:0.61581 [953] train-logloss:0.61566 [954] train-logloss:0.61573 [955] train-logloss:0.61590 [956] train-logloss:0.61602 [957] train-logloss:0.61595 [958] train-logloss:0.61607 [959] train-logloss:0.61633 [960] train-logloss:0.61581 [961] train-logloss:0.61588 [962] train-logloss:0.61593 [963] train-logloss:0.61603 [964] train-logloss:0.61550 [965] train-logloss:0.61553 [966] train-logloss:0.61595 [967] train-logloss:0.61583 [968] train-logloss:0.61558 [969] train-logloss:0.61575 [970] train-logloss:0.61599 [971] train-logloss:0.61579 [972] train-logloss:0.61623 [973] train-logloss:0.61584 [974] train-logloss:0.61529 [975] train-logloss:0.61515 [976] train-logloss:0.61492 [977] train-logloss:0.61465 [978] train-logloss:0.61481 [979] train-logloss:0.61462 [980] train-logloss:0.61420 [981] train-logloss:0.61395 [982] train-logloss:0.61406 [983] train-logloss:0.61360 [984] train-logloss:0.61340 [985] train-logloss:0.61345 [986] train-logloss:0.61342 [987] train-logloss:0.61302 [988] train-logloss:0.61285 [989] train-logloss:0.61300 [990] train-logloss:0.61285 [991] train-logloss:0.61253 [992] train-logloss:0.61262 [993] train-logloss:0.61249 [994] train-logloss:0.61250 [995] train-logloss:0.61245 [996] train-logloss:0.61260 [997] train-logloss:0.61251 [998] train-logloss:0.61306 [999] train-logloss:0.61383 [1000] train-logloss:0.61397 [1001] train-logloss:0.61455 [1002] train-logloss:0.61472 [1003] train-logloss:0.61494 [1004] train-logloss:0.61473 [1005] train-logloss:0.61453 [1006] train-logloss:0.61421 [1007] train-logloss:0.61468 [1008] train-logloss:0.61430 [1009] train-logloss:0.61480 [1010] train-logloss:0.61528 [1011] train-logloss:0.61538 [1012] train-logloss:0.61550 [1013] train-logloss:0.61584 [1014] train-logloss:0.61590 [1015] train-logloss:0.61605 [1016] train-logloss:0.61570 [1017] train-logloss:0.61538 [1018] train-logloss:0.61533 [1019] train-logloss:0.61534 [1020] train-logloss:0.61527 [1021] train-logloss:0.61568 [1022] train-logloss:0.61605 [1023] train-logloss:0.61607 [1024] train-logloss:0.61542 [1025] train-logloss:0.61558 [1026] train-logloss:0.61556 [1027] train-logloss:0.61553 [1028] train-logloss:0.61594 [1029] train-logloss:0.61582 [1030] train-logloss:0.61594 [1031] train-logloss:0.61604 [1032] train-logloss:0.61639 [1033] train-logloss:0.61661 [1034] train-logloss:0.61689 [1035] train-logloss:0.61686 [1036] train-logloss:0.61699 [1037] train-logloss:0.61677 [1038] train-logloss:0.61704 [1039] train-logloss:0.61679 [1040] train-logloss:0.61639 [1041] train-logloss:0.61661 [1042] train-logloss:0.61671 [1043] train-logloss:0.61707 [1044] train-logloss:0.61705 [1045] train-logloss:0.61700 [1046] train-logloss:0.61702 [1047] train-logloss:0.61658 [1048] train-logloss:0.61620 [1049] train-logloss:0.61636 [1050] train-logloss:0.61652 [1051] train-logloss:0.61664 [1052] train-logloss:0.61641 [1053] train-logloss:0.61597 [1054] train-logloss:0.61604 [1055] train-logloss:0.61616 [1056] train-logloss:0.61564 [1057] train-logloss:0.61594 [1058] train-logloss:0.61626 [1059] train-logloss:0.61589 [1060] train-logloss:0.61572 [1061] train-logloss:0.61588 [1062] train-logloss:0.61573 [1063] train-logloss:0.61585 [1064] train-logloss:0.61614 [1065] train-logloss:0.61631 [1066] train-logloss:0.61634 [1067] train-logloss:0.61673 [1068] train-logloss:0.61688 [1069] train-logloss:0.61712 [1070] train-logloss:0.61709 [1071] train-logloss:0.61696 [1072] train-logloss:0.61791 [1073] train-logloss:0.61820 [1074] train-logloss:0.61861 [1075] train-logloss:0.61900 [1076] train-logloss:0.61834 [1077] train-logloss:0.61826 [1078] train-logloss:0.61791 [1079] train-logloss:0.61792 [1080] train-logloss:0.61756 [1081] train-logloss:0.61741 [1082] train-logloss:0.61676 [1083] train-logloss:0.61664 [1084] train-logloss:0.61645 [1085] train-logloss:0.61573 [1086] train-logloss:0.61622 [1087] train-logloss:0.61672 [1088] train-logloss:0.61692 [1089] train-logloss:0.61723 [1090] train-logloss:0.61650 [1091] train-logloss:0.61586 [1092] train-logloss:0.61588 [1093] train-logloss:0.61634 [1094] train-logloss:0.61671 [1095] train-logloss:0.61643 [1096] train-logloss:0.61593 [1097] train-logloss:0.61576 [1098] train-logloss:0.61546 [1099] train-logloss:0.61495 [1100] train-logloss:0.61523 [1101] train-logloss:0.61544 [1102] train-logloss:0.61590 [1103] train-logloss:0.61593 [1104] train-logloss:0.61564 [1105] train-logloss:0.61594 [1106] train-logloss:0.61570 [1107] train-logloss:0.61605 [1108] train-logloss:0.61652 [1109] train-logloss:0.61626 [1110] train-logloss:0.61620 [1111] train-logloss:0.61637 [1112] train-logloss:0.61701 [1113] train-logloss:0.61639 [1114] train-logloss:0.61580 [1115] train-logloss:0.61562 [1116] train-logloss:0.61616 [1117] train-logloss:0.61612 [1118] train-logloss:0.61586 [1119] train-logloss:0.61648 [1120] train-logloss:0.61633 [1121] train-logloss:0.61633 [1122] train-logloss:0.61712 [1123] train-logloss:0.61759 [1124] train-logloss:0.61791 [1125] train-logloss:0.61720 [1126] train-logloss:0.61710 [1127] train-logloss:0.61720 [1128] train-logloss:0.61675 [1129] train-logloss:0.61666 [1130] train-logloss:0.61628 [1131] train-logloss:0.61601 [1132] train-logloss:0.61628 [1133] train-logloss:0.61608 [1134] train-logloss:0.61602 [1135] train-logloss:0.61527 [1136] train-logloss:0.61503 [1137] train-logloss:0.61488 [1138] train-logloss:0.61479 [1139] train-logloss:0.61432 [1140] train-logloss:0.61408 [1141] train-logloss:0.61431 [1142] train-logloss:0.61440 [1143] train-logloss:0.61479 [1144] train-logloss:0.61484 [1145] train-logloss:0.61439 [1146] train-logloss:0.61438 [1147] train-logloss:0.61478 [1148] train-logloss:0.61462 [1149] train-logloss:0.61460 [1150] train-logloss:0.61440 [1151] train-logloss:0.61477 [1152] train-logloss:0.61534 [1153] train-logloss:0.61534 [1154] train-logloss:0.61508 [1155] train-logloss:0.61530 [1156] train-logloss:0.61556 [1157] train-logloss:0.61549 [1158] train-logloss:0.61548 [1159] train-logloss:0.61577 [1160] train-logloss:0.61552 [1161] train-logloss:0.61577 [1162] train-logloss:0.61566 [1163] train-logloss:0.61610 [1164] train-logloss:0.61608 [1165] train-logloss:0.61612 [1166] train-logloss:0.61637 [1167] train-logloss:0.61638 [1168] train-logloss:0.61655 [1169] train-logloss:0.61646 [1170] train-logloss:0.61632 [1171] train-logloss:0.61654 [1172] train-logloss:0.61617 [1173] train-logloss:0.61593 [1174] train-logloss:0.61582 [1175] train-logloss:0.61604 [1176] train-logloss:0.61593 [1177] train-logloss:0.61602 [1178] train-logloss:0.61590 [1179] train-logloss:0.61559 [1180] train-logloss:0.61554 [1181] train-logloss:0.61582 [1182] train-logloss:0.61582 [1183] train-logloss:0.61576 [1184] train-logloss:0.61592 [1185] train-logloss:0.61615 [1186] train-logloss:0.61567 [1187] train-logloss:0.61549 [1188] train-logloss:0.61548 [1189] train-logloss:0.61619 [1190] train-logloss:0.61626 [1191] train-logloss:0.61679 [1192] train-logloss:0.61673 [1193] train-logloss:0.61731 [1194] train-logloss:0.61746 [1195] train-logloss:0.61761 [1196] train-logloss:0.61761 [1197] train-logloss:0.61751 [1198] train-logloss:0.61805 [1199] train-logloss:0.61834 [1200] train-logloss:0.61812 [1201] train-logloss:0.61811 [1202] train-logloss:0.61823 [1203] train-logloss:0.61798 [1204] train-logloss:0.61777 [1205] train-logloss:0.61818 [1206] train-logloss:0.61818 [1207] train-logloss:0.61824 [1208] train-logloss:0.61831 [1209] train-logloss:0.61811 [1210] train-logloss:0.61812 [1211] train-logloss:0.61833 [1212] train-logloss:0.61835 [1213] train-logloss:0.61837 [1214] train-logloss:0.61841 [1215] train-logloss:0.61840 [1216] train-logloss:0.61836 [1217] train-logloss:0.61805 [1218] train-logloss:0.61808 [1219] train-logloss:0.61835 [1220] train-logloss:0.61845 [1221] train-logloss:0.61870 [1222] train-logloss:0.61850 [1223] train-logloss:0.61854 [1224] train-logloss:0.61863 [1225] train-logloss:0.61899 [1226] train-logloss:0.61892 [1227] train-logloss:0.61846 [1228] train-logloss:0.61747 [1229] train-logloss:0.61741 [1230] train-logloss:0.61723 [1231] train-logloss:0.61720 [1232] train-logloss:0.61760 [1233] train-logloss:0.61721 [1234] train-logloss:0.61750 [1235] train-logloss:0.61749 [1236] train-logloss:0.61791 [1237] train-logloss:0.61784 [1238] train-logloss:0.61782 [1239] train-logloss:0.61761 [1240] train-logloss:0.61788 [1241] train-logloss:0.61803 [1242] train-logloss:0.61798 [1243] train-logloss:0.61792 [1244] train-logloss:0.61842 [1245] train-logloss:0.61798 [1246] train-logloss:0.61819 [1247] train-logloss:0.61888 [1248] train-logloss:0.61904 [1249] train-logloss:0.61933 [1250] train-logloss:0.61934 [1251] train-logloss:0.61989 [1252] train-logloss:0.61986 [1253] train-logloss:0.61987 [1254] train-logloss:0.62028 [1255] train-logloss:0.62067 [1256] train-logloss:0.62057 [1257] train-logloss:0.62052 [1258] train-logloss:0.62099 [1259] train-logloss:0.62093 [1260] train-logloss:0.62084 [1261] train-logloss:0.62128 [1262] train-logloss:0.62201 [1263] train-logloss:0.62241 [1264] train-logloss:0.62245 [1265] train-logloss:0.62252 [1266] train-logloss:0.62243 [1267] train-logloss:0.62244 [1268] train-logloss:0.62245 [1269] train-logloss:0.62248 [1270] train-logloss:0.62249 [1271] train-logloss:0.62313 [1272] train-logloss:0.62362 [1273] train-logloss:0.62363 [1274] train-logloss:0.62333 [1275] train-logloss:0.62393 [1276] train-logloss:0.62373 [1277] train-logloss:0.62412 [1278] train-logloss:0.62350 [1279] train-logloss:0.62284 [1280] train-logloss:0.62233 [1281] train-logloss:0.62190 [1282] train-logloss:0.62219 [1283] train-logloss:0.62188 [1284] train-logloss:0.62152 [1285] train-logloss:0.62160 [1286] train-logloss:0.62161 [1287] train-logloss:0.62144 [1288] train-logloss:0.62174 [1289] train-logloss:0.62205 [1290] train-logloss:0.62258 [1291] train-logloss:0.62214 [1292] train-logloss:0.62211 [1293] train-logloss:0.62220 [1294] train-logloss:0.62162 [1295] train-logloss:0.62190 [1296] train-logloss:0.62167 [1297] train-logloss:0.62130 [1298] train-logloss:0.62131 [1299] train-logloss:0.62069 [1300] train-logloss:0.62077 [1301] train-logloss:0.62085 [1302] train-logloss:0.62065 [1303] train-logloss:0.62093 [1304] train-logloss:0.62098 [1305] train-logloss:0.62133 [1306] train-logloss:0.62180 [1307] train-logloss:0.62205 [1308] train-logloss:0.62153 [1309] train-logloss:0.62135 [1310] train-logloss:0.62109 [1311] train-logloss:0.62135 [1312] train-logloss:0.62126 [1313] train-logloss:0.62143 [1314] train-logloss:0.62136 [1315] train-logloss:0.62137 [1316] train-logloss:0.62184 [1317] train-logloss:0.62164 [1318] train-logloss:0.62177 [1319] train-logloss:0.62198 [1320] train-logloss:0.62296 [1321] train-logloss:0.62289 [1322] train-logloss:0.62195 [1323] train-logloss:0.62224 [1324] train-logloss:0.62239 [1325] train-logloss:0.62226 [1326] train-logloss:0.62231 [1327] train-logloss:0.62226 [1328] train-logloss:0.62208 [1329] train-logloss:0.62160 [1330] train-logloss:0.62211 [1331] train-logloss:0.62208 [1332] train-logloss:0.62155 [1333] train-logloss:0.62138 [1334] train-logloss:0.62145 [1335] train-logloss:0.62141 [1336] train-logloss:0.62144 [1337] train-logloss:0.62210 [1338] train-logloss:0.62197 [1339] train-logloss:0.62169 [1340] train-logloss:0.62142 [1341] train-logloss:0.62128 [1342] train-logloss:0.62129 [1343] train-logloss:0.62180 [1344] train-logloss:0.62237 [1345] train-logloss:0.62215 [1346] train-logloss:0.62250 [1347] train-logloss:0.62197 [1348] train-logloss:0.62196 [1349] train-logloss:0.62166 [1350] train-logloss:0.62169 [1351] train-logloss:0.62127 [1352] train-logloss:0.62157 [1353] train-logloss:0.62163 [1354] train-logloss:0.62116 [1355] train-logloss:0.62129 [1356] train-logloss:0.62164 [1357] train-logloss:0.62179 [1358] train-logloss:0.62193 [1359] train-logloss:0.62255 [1360] train-logloss:0.62253 [1361] train-logloss:0.62186 [1362] train-logloss:0.62189 [1363] train-logloss:0.62179 [1364] train-logloss:0.62182 [1365] train-logloss:0.62170 [1366] train-logloss:0.62147 [1367] train-logloss:0.62138 [1368] train-logloss:0.62146 [1369] train-logloss:0.62147 [1370] train-logloss:0.62220 [1371] train-logloss:0.62200 [1372] train-logloss:0.62165 [1373] train-logloss:0.62146 [1374] train-logloss:0.62162 [1375] train-logloss:0.62167 [1376] train-logloss:0.62154 [1377] train-logloss:0.62150 [1378] train-logloss:0.62163 [1379] train-logloss:0.62158 [1380] train-logloss:0.62126 [1381] train-logloss:0.62109 [1382] train-logloss:0.62034 [1383] train-logloss:0.62063 [1384] train-logloss:0.61993 [1385] train-logloss:0.62037 [1386] train-logloss:0.62061 [1387] train-logloss:0.62109 [1388] train-logloss:0.62067 [1389] train-logloss:0.62111 [1390] train-logloss:0.62117 [1391] train-logloss:0.62114 [1392] train-logloss:0.62100 [1393] train-logloss:0.62126 [1394] train-logloss:0.62121 [1395] train-logloss:0.62034 [1396] train-logloss:0.62015 [1397] train-logloss:0.61977 [1398] train-logloss:0.61984 [1399] train-logloss:0.61980 [1400] train-logloss:0.62001 [1401] train-logloss:0.62021 [1402] train-logloss:0.61998 [1403] train-logloss:0.61985 [1404] train-logloss:0.62000 [1405] train-logloss:0.61983 [1406] train-logloss:0.62019 [1407] train-logloss:0.62021 [1408] train-logloss:0.62011 [1409] train-logloss:0.62013 [1410] train-logloss:0.62020 [1411] train-logloss:0.62035 [1412] train-logloss:0.62013 [1413] train-logloss:0.62051 [1414] train-logloss:0.62023 [1415] train-logloss:0.61969 [1416] train-logloss:0.61964 [1417] train-logloss:0.62012 [1418] train-logloss:0.61977 [1419] train-logloss:0.62004 [1420] train-logloss:0.61985 [1421] train-logloss:0.62022 [1422] train-logloss:0.62018 [1423] train-logloss:0.62115 [1424] train-logloss:0.62131 [1425] train-logloss:0.62105 [1426] train-logloss:0.62091 [1427] train-logloss:0.62092 [1428] train-logloss:0.62157 [1429] train-logloss:0.62142 [1430] train-logloss:0.62116 [1431] train-logloss:0.62139 [1432] train-logloss:0.62133 [1433] train-logloss:0.62163 [1434] train-logloss:0.62205 [1435] train-logloss:0.62173 [1436] train-logloss:0.62203 [1437] train-logloss:0.62223 [1438] train-logloss:0.62139 [1439] train-logloss:0.62153 [1440] train-logloss:0.62179 [1441] train-logloss:0.62182 [1442] train-logloss:0.62184 [1443] train-logloss:0.62181 [1444] train-logloss:0.62181 [1445] train-logloss:0.62172 [1446] train-logloss:0.62191 [1447] train-logloss:0.62234 [1448] train-logloss:0.62249 [1449] train-logloss:0.62289 [1450] train-logloss:0.62289 [1451] train-logloss:0.62240 [1452] train-logloss:0.62203 [1453] train-logloss:0.62179 [1454] train-logloss:0.62148 [1455] train-logloss:0.62208 [1456] train-logloss:0.62211 [1457] train-logloss:0.62210 [1458] train-logloss:0.62212 [1459] train-logloss:0.62243 [1460] train-logloss:0.62176 [1461] train-logloss:0.62173 [1462] train-logloss:0.62273 [1463] train-logloss:0.62274 [1464] train-logloss:0.62264 [1465] train-logloss:0.62251 [1466] train-logloss:0.62216 [1467] train-logloss:0.62178 [1468] train-logloss:0.62177 [1469] train-logloss:0.62123 [1470] train-logloss:0.62158 [1471] train-logloss:0.62149 [1472] train-logloss:0.62120 [1473] train-logloss:0.62089 [1474] train-logloss:0.62088 [1475] train-logloss:0.62042 [1476] train-logloss:0.62060 [1477] train-logloss:0.62094 [1478] train-logloss:0.62070 [1479] train-logloss:0.62138 [1480] train-logloss:0.62191 [1481] train-logloss:0.62263 [1482] train-logloss:0.62314 [1483] train-logloss:0.62297 [1484] train-logloss:0.62304 [1485] train-logloss:0.62302 [1486] train-logloss:0.62320 [1487] train-logloss:0.62371 [1488] train-logloss:0.62408 [1489] train-logloss:0.62425 [1490] train-logloss:0.62483 [1491] train-logloss:0.62470 [1492] train-logloss:0.62468 [1493] train-logloss:0.62445 [1494] train-logloss:0.62364 [1495] train-logloss:0.62281 [1496] train-logloss:0.62235 [1497] train-logloss:0.62246 [1498] train-logloss:0.62299 [1499] train-logloss:0.62292 [1500] train-logloss:0.62292 [1501] train-logloss:0.62397 [1502] train-logloss:0.62421 [1503] train-logloss:0.62474 [1504] train-logloss:0.62482 [1505] train-logloss:0.62449 [1506] train-logloss:0.62440 [1507] train-logloss:0.62389 [1508] train-logloss:0.62370 [1509] train-logloss:0.62357 [1510] train-logloss:0.62330 [1511] train-logloss:0.62317 [1512] train-logloss:0.62402 [1513] train-logloss:0.62354 [1514] train-logloss:0.62335 [1515] train-logloss:0.62294 [1516] train-logloss:0.62292 [1517] train-logloss:0.62292 [1518] train-logloss:0.62291 [1519] train-logloss:0.62241 [1520] train-logloss:0.62281 [1521] train-logloss:0.62292 [1522] train-logloss:0.62264 [1523] train-logloss:0.62284 [1524] train-logloss:0.62344 [1525] train-logloss:0.62342 [1526] train-logloss:0.62341 [1527] train-logloss:0.62322 [1528] train-logloss:0.62380 [1529] train-logloss:0.62396 [1530] train-logloss:0.62362 [1531] train-logloss:0.62355 [1532] train-logloss:0.62339 [1533] train-logloss:0.62331 [1534] train-logloss:0.62320 [1535] train-logloss:0.62286 [1536] train-logloss:0.62317 [1537] train-logloss:0.62443 [1538] train-logloss:0.62493 [1539] train-logloss:0.62527 [1540] train-logloss:0.62483 [1541] train-logloss:0.62509 [1542] train-logloss:0.62480 [1543] train-logloss:0.62506 [1544] train-logloss:0.62635 [1545] train-logloss:0.62708 [1546] train-logloss:0.62721 [1547] train-logloss:0.62686 [1548] train-logloss:0.62723 [1549] train-logloss:0.62748 [1550] train-logloss:0.62745 [1551] train-logloss:0.62808 [1552] train-logloss:0.62749 [1553] train-logloss:0.62703 [1554] train-logloss:0.62705 [1555] train-logloss:0.62714 [1556] train-logloss:0.62733 [1557] train-logloss:0.62796 [1558] train-logloss:0.62826 [1559] train-logloss:0.62826 [1560] train-logloss:0.62829 [1561] train-logloss:0.62839 [1562] train-logloss:0.62812 [1563] train-logloss:0.62794 [1564] train-logloss:0.62794 [1565] train-logloss:0.62733 [1566] train-logloss:0.62713 [1567] train-logloss:0.62760 [1568] train-logloss:0.62765 [1569] train-logloss:0.62734 [1570] train-logloss:0.62715 [1571] train-logloss:0.62716 [1572] train-logloss:0.62697 [1573] train-logloss:0.62685 [1574] train-logloss:0.62616 [1575] train-logloss:0.62604 [1576] train-logloss:0.62584 [1577] train-logloss:0.62552 [1578] train-logloss:0.62563 [1579] train-logloss:0.62520 [1580] train-logloss:0.62522 [1581] train-logloss:0.62523 [1582] train-logloss:0.62511 [1583] train-logloss:0.62505 [1584] train-logloss:0.62541 [1585] train-logloss:0.62588 [1586] train-logloss:0.62578 [1587] train-logloss:0.62553 [1588] train-logloss:0.62557 [1589] train-logloss:0.62467 [1590] train-logloss:0.62473 [1591] train-logloss:0.62508 [1592] train-logloss:0.62497 [1593] train-logloss:0.62453 [1594] train-logloss:0.62384 [1595] train-logloss:0.62420 [1596] train-logloss:0.62446 [1597] train-logloss:0.62479 [1598] train-logloss:0.62449 [1599] train-logloss:0.62449 [1600] train-logloss:0.62423 [1601] train-logloss:0.62411 [1602] train-logloss:0.62388 [1603] train-logloss:0.62411 [1604] train-logloss:0.62443 [1605] train-logloss:0.62469 [1606] train-logloss:0.62507 [1607] train-logloss:0.62572 [1608] train-logloss:0.62554 [1609] train-logloss:0.62555 [1610] train-logloss:0.62558 [1611] train-logloss:0.62570 [1612] train-logloss:0.62653 [1613] train-logloss:0.62706 [1614] train-logloss:0.62691 [1615] train-logloss:0.62700 [1616] train-logloss:0.62672 [1617] train-logloss:0.62688 [1618] train-logloss:0.62700 [1619] train-logloss:0.62699 [1620] train-logloss:0.62742 [1621] train-logloss:0.62767 [1622] train-logloss:0.62734 [1623] train-logloss:0.62717 [1624] train-logloss:0.62756 [1625] train-logloss:0.62705 [1626] train-logloss:0.62695 [1627] train-logloss:0.62633 [1628] train-logloss:0.62619 [1629] train-logloss:0.62691 [1630] train-logloss:0.62652 [1631] train-logloss:0.62642 [1632] train-logloss:0.62627 [1633] train-logloss:0.62633 [1634] train-logloss:0.62699 [1635] train-logloss:0.62705 [1636] train-logloss:0.62704 [1637] train-logloss:0.62736 [1638] train-logloss:0.62731 [1639] train-logloss:0.62708 [1640] train-logloss:0.62668 [1641] train-logloss:0.62663 [1642] train-logloss:0.62660 [1643] train-logloss:0.62673 [1644] train-logloss:0.62695 [1645] train-logloss:0.62719 [1646] train-logloss:0.62804 [1647] train-logloss:0.62804 [1648] train-logloss:0.62861 [1649] train-logloss:0.62823 [1650] train-logloss:0.62817 [1651] train-logloss:0.62793 [1652] train-logloss:0.62743 [1653] train-logloss:0.62737 [1654] train-logloss:0.62774 [1655] train-logloss:0.62777 [1656] train-logloss:0.62778 [1657] train-logloss:0.62840 [1658] train-logloss:0.62773 [1659] train-logloss:0.62748 [1660] train-logloss:0.62749 [1661] train-logloss:0.62737 [1662] train-logloss:0.62715 [1663] train-logloss:0.62719 [1664] train-logloss:0.62730 [1665] train-logloss:0.62723 [1666] train-logloss:0.62722 [1667] train-logloss:0.62713 [1668] train-logloss:0.62705 [1669] train-logloss:0.62717 [1670] train-logloss:0.62800 [1671] train-logloss:0.62689 [1672] train-logloss:0.62649 [1673] train-logloss:0.62711 [1674] train-logloss:0.62687 [1675] train-logloss:0.62650 [1676] train-logloss:0.62633 [1677] train-logloss:0.62623 [1678] train-logloss:0.62646 [1679] train-logloss:0.62636 [1680] train-logloss:0.62612 [1681] train-logloss:0.62655 [1682] train-logloss:0.62635 [1683] train-logloss:0.62605 [1684] train-logloss:0.62646 [1685] train-logloss:0.62708 [1686] train-logloss:0.62742 [1687] train-logloss:0.62785 [1688] train-logloss:0.62789 [1689] train-logloss:0.62822 [1690] train-logloss:0.62799 [1691] train-logloss:0.62868 [1692] train-logloss:0.62901 [1693] train-logloss:0.62901 [1694] train-logloss:0.62914 [1695] train-logloss:0.62889 [1696] train-logloss:0.62889 [1697] train-logloss:0.62943 [1698] train-logloss:0.63000 [1699] train-logloss:0.63004 [1700] train-logloss:0.63026 [1701] train-logloss:0.63075 [1702] train-logloss:0.63076 [1703] train-logloss:0.63148 [1704] train-logloss:0.63152 [1705] train-logloss:0.63151 [1706] train-logloss:0.63170 [1707] train-logloss:0.63178 [1708] train-logloss:0.63160 [1709] train-logloss:0.63154 [1710] train-logloss:0.63216 [1711] train-logloss:0.63176 [1712] train-logloss:0.63144 [1713] train-logloss:0.63144 [1714] train-logloss:0.63135 [1715] train-logloss:0.63146 [1716] train-logloss:0.63145 [1717] train-logloss:0.63156 [1718] train-logloss:0.63085 [1719] train-logloss:0.63143 [1720] train-logloss:0.63115 [1721] train-logloss:0.63196 [1722] train-logloss:0.63176 [1723] train-logloss:0.63173 [1724] train-logloss:0.63226 [1725] train-logloss:0.63247 [1726] train-logloss:0.63249 [1727] train-logloss:0.63195 [1728] train-logloss:0.63201 [1729] train-logloss:0.63176 [1730] train-logloss:0.63183 [1731] train-logloss:0.63172 [1732] train-logloss:0.63126 [1733] train-logloss:0.63168 [1734] train-logloss:0.63187 [1735] train-logloss:0.63190 [1736] train-logloss:0.63153 [1737] train-logloss:0.63155 [1738] train-logloss:0.63142 [1739] train-logloss:0.63193 [1740] train-logloss:0.63273 [1741] train-logloss:0.63286 [1742] train-logloss:0.63302 [1743] train-logloss:0.63290 [1744] train-logloss:0.63289 [1745] train-logloss:0.63304 [1746] train-logloss:0.63250 [1747] train-logloss:0.63258 [1748] train-logloss:0.63193 [1749] train-logloss:0.63185 [1750] train-logloss:0.63220 [1751] train-logloss:0.63252 [1752] train-logloss:0.63256 [1753] train-logloss:0.63246 [1754] train-logloss:0.63227 [1755] train-logloss:0.63293 [1756] train-logloss:0.63271 [1757] train-logloss:0.63324 [1758] train-logloss:0.63333 [1759] train-logloss:0.63328 [1760] train-logloss:0.63319 [1761] train-logloss:0.63320 [1762] train-logloss:0.63344 [1763] train-logloss:0.63367 [1764] train-logloss:0.63343 [1765] train-logloss:0.63387 [1766] train-logloss:0.63410 [1767] train-logloss:0.63494 [1768] train-logloss:0.63479 [1769] train-logloss:0.63492 [1770] train-logloss:0.63518 [1771] train-logloss:0.63433 [1772] train-logloss:0.63369 [1773] train-logloss:0.63367 [1774] train-logloss:0.63371 [1775] train-logloss:0.63405 [1776] train-logloss:0.63410 [1777] train-logloss:0.63479 [1778] train-logloss:0.63420 [1779] train-logloss:0.63421 [1780] train-logloss:0.63344 [1781] train-logloss:0.63337 [1782] train-logloss:0.63343 [1783] train-logloss:0.63341 [1784] train-logloss:0.63357 [1785] train-logloss:0.63359 [1786] train-logloss:0.63375 [1787] train-logloss:0.63367 [1788] train-logloss:0.63314 [1789] train-logloss:0.63308 [1790] train-logloss:0.63310 [1791] train-logloss:0.63399 [1792] train-logloss:0.63392 [1793] train-logloss:0.63406 [1794] train-logloss:0.63405 [1795] train-logloss:0.63456 [1796] train-logloss:0.63486 [1797] train-logloss:0.63499 [1798] train-logloss:0.63507 [1799] train-logloss:0.63509 [1800] train-logloss:0.63491 [1801] train-logloss:0.63487 [1802] train-logloss:0.63536 [1803] train-logloss:0.63584 [1804] train-logloss:0.63591 [1805] train-logloss:0.63588 [1806] train-logloss:0.63546 [1807] train-logloss:0.63529 [1808] train-logloss:0.63565 [1809] train-logloss:0.63558 [1810] train-logloss:0.63572 [1811] train-logloss:0.63561 [1812] train-logloss:0.63598 [1813] train-logloss:0.63634 [1814] train-logloss:0.63634 [1815] train-logloss:0.63663 [1816] train-logloss:0.63615 [1817] train-logloss:0.63646 [1818] train-logloss:0.63635 [1819] train-logloss:0.63620 [1820] train-logloss:0.63593 [1821] train-logloss:0.63538 [1822] train-logloss:0.63517 [1823] train-logloss:0.63479 [1824] train-logloss:0.63480 [1825] train-logloss:0.63417 [1826] train-logloss:0.63417 [1827] train-logloss:0.63357 [1828] train-logloss:0.63291 [1829] train-logloss:0.63237 [1830] train-logloss:0.63229 [1831] train-logloss:0.63239 [1832] train-logloss:0.63236 [1833] train-logloss:0.63249 [1834] train-logloss:0.63265 [1835] train-logloss:0.63263 [1836] train-logloss:0.63264 [1837] train-logloss:0.63256 [1838] train-logloss:0.63256 [1839] train-logloss:0.63252 [1840] train-logloss:0.63264 [1841] train-logloss:0.63257 [1842] train-logloss:0.63266 [1843] train-logloss:0.63267 [1844] train-logloss:0.63223 [1845] train-logloss:0.63223 [1846] train-logloss:0.63218 [1847] train-logloss:0.63234 [1848] train-logloss:0.63234 [1849] train-logloss:0.63235 [1850] train-logloss:0.63175 [1851] train-logloss:0.63204 [1852] train-logloss:0.63210 [1853] train-logloss:0.63177 [1854] train-logloss:0.63243 [1855] train-logloss:0.63226 [1856] train-logloss:0.63271 [1857] train-logloss:0.63206 [1858] train-logloss:0.63206 [1859] train-logloss:0.63191 [1860] train-logloss:0.63220 [1861] train-logloss:0.63236 [1862] train-logloss:0.63214 [1863] train-logloss:0.63248 [1864] train-logloss:0.63216 [1865] train-logloss:0.63245 [1866] train-logloss:0.63247 [1867] train-logloss:0.63262 [1868] train-logloss:0.63261 [1869] train-logloss:0.63266 [1870] train-logloss:0.63278 [1871] train-logloss:0.63256 [1872] train-logloss:0.63322 [1873] train-logloss:0.63320 [1874] train-logloss:0.63290 [1875] train-logloss:0.63291 [1876] train-logloss:0.63290 [1877] train-logloss:0.63275 [1878] train-logloss:0.63277 [1879] train-logloss:0.63280 [1880] train-logloss:0.63254 [1881] train-logloss:0.63225 [1882] train-logloss:0.63286 [1883] train-logloss:0.63271 [1884] train-logloss:0.63270 [1885] train-logloss:0.63268 [1886] train-logloss:0.63268 [1887] train-logloss:0.63276 [1888] train-logloss:0.63250 [1889] train-logloss:0.63276 [1890] train-logloss:0.63270 [1891] train-logloss:0.63247 [1892] train-logloss:0.63222 [1893] train-logloss:0.63252 [1894] train-logloss:0.63280 [1895] train-logloss:0.63284 [1896] train-logloss:0.63253 [1897] train-logloss:0.63241 [1898] train-logloss:0.63218 [1899] train-logloss:0.63219 [1900] train-logloss:0.63192 [1901] train-logloss:0.63223 [1902] train-logloss:0.63201 [1903] train-logloss:0.63173 [1904] train-logloss:0.63202 [1905] train-logloss:0.63222 [1906] train-logloss:0.63181 [1907] train-logloss:0.63178 [1908] train-logloss:0.63213 [1909] train-logloss:0.63178 [1910] train-logloss:0.63225 [1911] train-logloss:0.63274 [1912] train-logloss:0.63294 [1913] train-logloss:0.63338 [1914] train-logloss:0.63338 [1915] train-logloss:0.63338 [1916] train-logloss:0.63341 [1917] train-logloss:0.63340 [1918] train-logloss:0.63349 [1919] train-logloss:0.63310 [1920] train-logloss:0.63315 [1921] train-logloss:0.63328 [1922] train-logloss:0.63319 [1923] train-logloss:0.63287 [1924] train-logloss:0.63251 [1925] train-logloss:0.63272 [1926] train-logloss:0.63240 [1927] train-logloss:0.63280 [1928] train-logloss:0.63241 [1929] train-logloss:0.63241 [1930] train-logloss:0.63241 [1931] train-logloss:0.63229 [1932] train-logloss:0.63205 [1933] train-logloss:0.63170 [1934] train-logloss:0.63269 [1935] train-logloss:0.63312 [1936] train-logloss:0.63253 [1937] train-logloss:0.63222 [1938] train-logloss:0.63223 [1939] train-logloss:0.63224 [1940] train-logloss:0.63252 [1941] train-logloss:0.63260 [1942] train-logloss:0.63329 [1943] train-logloss:0.63331 [1944] train-logloss:0.63432 [1945] train-logloss:0.63457 [1946] train-logloss:0.63454 [1947] train-logloss:0.63421 [1948] train-logloss:0.63418 [1949] train-logloss:0.63412 [1950] train-logloss:0.63373 [1951] train-logloss:0.63307 [1952] train-logloss:0.63306 [1953] train-logloss:0.63307 [1954] train-logloss:0.63296 [1955] train-logloss:0.63289 [1956] train-logloss:0.63286 [1957] train-logloss:0.63286 [1958] train-logloss:0.63286 [1959] train-logloss:0.63268 [1960] train-logloss:0.63289 [1961] train-logloss:0.63299 [1962] train-logloss:0.63288 [1963] train-logloss:0.63288 [1964] train-logloss:0.63280 [1965] train-logloss:0.63254 [1966] train-logloss:0.63272 [1967] train-logloss:0.63287 [1968] train-logloss:0.63327 [1969] train-logloss:0.63324 [1970] train-logloss:0.63324 [1971] train-logloss:0.63336 [1972] train-logloss:0.63382 [1973] train-logloss:0.63386 [1974] train-logloss:0.63427 [1975] train-logloss:0.63428 [1976] train-logloss:0.63462 [1977] train-logloss:0.63443 [1978] train-logloss:0.63445 [1979] train-logloss:0.63453 [1980] train-logloss:0.63466 [1981] train-logloss:0.63527 [1982] train-logloss:0.63546 [1983] train-logloss:0.63513 [1984] train-logloss:0.63484 [1985] train-logloss:0.63482 [1986] train-logloss:0.63484 [1987] train-logloss:0.63513 [1988] train-logloss:0.63536 [1989] train-logloss:0.63516 [1990] train-logloss:0.63468 [1991] train-logloss:0.63452 [1992] train-logloss:0.63448 [1993] train-logloss:0.63460 [1994] train-logloss:0.63451 [1995] train-logloss:0.63422 [1996] train-logloss:0.63409 [1997] train-logloss:0.63412 [1998] train-logloss:0.63406 [1999] train-logloss:0.63402

step-04 用模型預(yù)測(cè)

ytrain=model.predict(dtrain)

注意:

  • 這里model.predict()預(yù)測(cè)得到的是概率值,而不是0或者1的結(jié)果
  • 下面將結(jié)果轉(zhuǎn)換為0或者1
ytrain_class = (ytrain>= 0.5)*1 ytest=model.predict(dtest) y_pred = (ytest >= 0.5)*1

step-05 評(píng)價(jià)模型效果

print(‘train_roc_auc_score:’,metrics.roc_auc_score(y_train,ytrain))
print(‘test_roc_auc_score:’,metrics.roc_auc_score(y_test, ytest))
print(‘train_accuracy_score:’,metrics.accuracy_score(y_train, ytrain_class))
print(‘test_accuracy_score:’,metrics.accuracy_score(y_test,y_pred ))

step-06 保存模型并調(diào)用

joblib.dump(model , r'D:\Ensemble_Learning\xgboostinfo\xgboost01.model') load_model=joblib.load(r'D:\Ensemble_Learning\xgboostinfo\xgboost01.model') ytest=load_model.predict(dtest) ytest[0:5] array([0.265046 , 0.39359182, 0.82298654, 0.07664716, 0.28468448],dtype=float32)

三. 網(wǎng)格搜索最優(yōu)xgboost參數(shù)

1.step-01 配置參數(shù)列表

from sklearn.model_selection import GridSearchCV ## 定義參數(shù)取值范圍 learning_rate = [0.1] #0.15,0.11 subsample = [ 0.65] #0.7,0.8 colsample_bytree = [0.6] #0.7, 0.5 colsample_bylevel=[0.7] #0.8, colsample_bynode=[0.7] #0.8, max_depth = [6] #,7 n_estimators=[1000] #,900 gamma=[0,0.1] reg_alpha=[1,2] reg_lambda=[2,3] min_child_weight=[30,50] max_bin=[12,16] base_score=[0.4,0.5,0.6]parameters = { 'learning_rate': learning_rate,'subsample': subsample,'colsample_bytree':colsample_bytree,'colsample_bylevel':colsample_bylevel,'colsample_bynode':colsample_bynode,'max_depth': max_depth,'n_estimators':n_estimators,'gamma':gamma,'reg_alpha':reg_alpha,'reg_lambda':reg_lambda,'min_child_weight':min_child_weight,'max_bin':max_bin,'base_score':base_score,}

step-02 選擇待優(yōu)化模型

model = XGBClassifier( eval_metric="logloss")

step-03 進(jìn)行網(wǎng)格搜索 擬合模型

clf = GridSearchCV(model, parameters, cv=2, scoring='accuracy',verbose=1,n_jobs=-1) clf = clf.fit(train.values, y_train.values,eval_set=eval_set) Fitting 2 folds for each of 96 candidates, totalling 192 fits [0] validation_0-logloss:0.68822 [1] validation_0-logloss:0.68488 [2] validation_0-logloss:0.67979 [3] validation_0-logloss:0.67770 [4] validation_0-logloss:0.67431 [5] validation_0-logloss:0.67095 [6] validation_0-logloss:0.66894 [7] validation_0-logloss:0.66736 [8] validation_0-logloss:0.66269 [9] validation_0-logloss:0.65911 [10] validation_0-logloss:0.65691 [11] validation_0-logloss:0.65429 [12] validation_0-logloss:0.64994 [13] validation_0-logloss:0.64843 [14] validation_0-logloss:0.64748 [15] validation_0-logloss:0.64628 [16] validation_0-logloss:0.64424 [17] validation_0-logloss:0.64260 [18] validation_0-logloss:0.64172 [19] validation_0-logloss:0.64020 [20] validation_0-logloss:0.63933 [21] validation_0-logloss:0.63795 [22] validation_0-logloss:0.63296 [23] validation_0-logloss:0.63192 [24] validation_0-logloss:0.63157 [25] validation_0-logloss:0.63006 [26] validation_0-logloss:0.62925 [27] validation_0-logloss:0.62915 [28] validation_0-logloss:0.62914 [29] validation_0-logloss:0.62940 [30] validation_0-logloss:0.62872 [31] validation_0-logloss:0.62866 [32] validation_0-logloss:0.62860 [33] validation_0-logloss:0.62812 [34] validation_0-logloss:0.62823 [35] validation_0-logloss:0.62819 [36] validation_0-logloss:0.62489 [37] validation_0-logloss:0.62490 [38] validation_0-logloss:0.62293 [39] validation_0-logloss:0.62222 [40] validation_0-logloss:0.62102 [41] validation_0-logloss:0.61937 [42] validation_0-logloss:0.61839 [43] validation_0-logloss:0.61829 [44] validation_0-logloss:0.61782 [45] validation_0-logloss:0.61781 [46] validation_0-logloss:0.61763 [47] validation_0-logloss:0.61733 [48] validation_0-logloss:0.61704 [49] validation_0-logloss:0.61602 [50] validation_0-logloss:0.61585 [51] validation_0-logloss:0.61632 [52] validation_0-logloss:0.61601 [53] validation_0-logloss:0.61658 [54] validation_0-logloss:0.61598 [55] validation_0-logloss:0.61581 [56] validation_0-logloss:0.61530 [57] validation_0-logloss:0.61455 [58] validation_0-logloss:0.61557 [59] validation_0-logloss:0.61533 [60] validation_0-logloss:0.61390 [61] validation_0-logloss:0.61426 [62] validation_0-logloss:0.61365 [63] validation_0-logloss:0.61269 [64] validation_0-logloss:0.61244 [65] validation_0-logloss:0.61196 [66] validation_0-logloss:0.61196 [67] validation_0-logloss:0.61175 [68] validation_0-logloss:0.61179 [69] validation_0-logloss:0.61195 [70] validation_0-logloss:0.61165 [71] validation_0-logloss:0.61130 [72] validation_0-logloss:0.61112 [73] validation_0-logloss:0.61133 [74] validation_0-logloss:0.61152 [75] validation_0-logloss:0.61118 [76] validation_0-logloss:0.61160 [77] validation_0-logloss:0.61167 [78] validation_0-logloss:0.61175 [79] validation_0-logloss:0.61156 [80] validation_0-logloss:0.61164 [81] validation_0-logloss:0.61126 [82] validation_0-logloss:0.61166 [83] validation_0-logloss:0.61163 [84] validation_0-logloss:0.61156 [85] validation_0-logloss:0.61177 [86] validation_0-logloss:0.61271 [87] validation_0-logloss:0.61074 [88] validation_0-logloss:0.61048 [89] validation_0-logloss:0.60983 [90] validation_0-logloss:0.60992 [91] validation_0-logloss:0.60904 [92] validation_0-logloss:0.60858 [93] validation_0-logloss:0.60805 [94] validation_0-logloss:0.60787 [95] validation_0-logloss:0.60836 [96] validation_0-logloss:0.60857 [97] validation_0-logloss:0.60862 [98] validation_0-logloss:0.60874 [99] validation_0-logloss:0.60815 [100] validation_0-logloss:0.60815 [101] validation_0-logloss:0.60762 [102] validation_0-logloss:0.60721 [103] validation_0-logloss:0.60722 [104] validation_0-logloss:0.60713 [105] validation_0-logloss:0.60712 [106] validation_0-logloss:0.60659 [107] validation_0-logloss:0.60623 [108] validation_0-logloss:0.60603 [109] validation_0-logloss:0.60549 [110] validation_0-logloss:0.60546 [111] validation_0-logloss:0.60535 [112] validation_0-logloss:0.60451 [113] validation_0-logloss:0.60451 [114] validation_0-logloss:0.60397 [115] validation_0-logloss:0.60426 [116] validation_0-logloss:0.60452 [117] validation_0-logloss:0.60424 [118] validation_0-logloss:0.60428 [119] validation_0-logloss:0.60379 [120] validation_0-logloss:0.60408 [121] validation_0-logloss:0.60420 [122] validation_0-logloss:0.60399 [123] validation_0-logloss:0.60389 [124] validation_0-logloss:0.60441 [125] validation_0-logloss:0.60494 [126] validation_0-logloss:0.60457 [127] validation_0-logloss:0.60444 [128] validation_0-logloss:0.60442 [129] validation_0-logloss:0.60438 [130] validation_0-logloss:0.60436 [131] validation_0-logloss:0.60378 [132] validation_0-logloss:0.60310 [133] validation_0-logloss:0.60328 [134] validation_0-logloss:0.60349 [135] validation_0-logloss:0.60336 [136] validation_0-logloss:0.60355 [137] validation_0-logloss:0.60356 [138] validation_0-logloss:0.60385 [139] validation_0-logloss:0.60383 [140] validation_0-logloss:0.60363 [141] validation_0-logloss:0.60288 [142] validation_0-logloss:0.60319 [143] validation_0-logloss:0.60344 [144] validation_0-logloss:0.60350 [145] validation_0-logloss:0.60393 [146] validation_0-logloss:0.60399 [147] validation_0-logloss:0.60408 [148] validation_0-logloss:0.60428 [149] validation_0-logloss:0.60439 [150] validation_0-logloss:0.60444 [151] validation_0-logloss:0.60460 [152] validation_0-logloss:0.60519 [153] validation_0-logloss:0.60553 [154] validation_0-logloss:0.60516 [155] validation_0-logloss:0.60552 [156] validation_0-logloss:0.60554 [157] validation_0-logloss:0.60521 [158] validation_0-logloss:0.60540 [159] validation_0-logloss:0.60549 [160] validation_0-logloss:0.60561 [161] validation_0-logloss:0.60576 [162] validation_0-logloss:0.60609 [163] validation_0-logloss:0.60591 [164] validation_0-logloss:0.60582 [165] validation_0-logloss:0.60576 [166] validation_0-logloss:0.60607 [167] validation_0-logloss:0.60569 [168] validation_0-logloss:0.60565 [169] validation_0-logloss:0.60612 [170] validation_0-logloss:0.60641 [171] validation_0-logloss:0.60640 [172] validation_0-logloss:0.60609 [173] validation_0-logloss:0.60584 [174] validation_0-logloss:0.60604 [175] validation_0-logloss:0.60608 [176] validation_0-logloss:0.60609 [177] validation_0-logloss:0.60606 [178] validation_0-logloss:0.60660 [179] validation_0-logloss:0.60601 [180] validation_0-logloss:0.60543 [181] validation_0-logloss:0.60482 [182] validation_0-logloss:0.60460 [183] validation_0-logloss:0.60465 [184] validation_0-logloss:0.60453 [185] validation_0-logloss:0.60450 [186] validation_0-logloss:0.60447 [187] validation_0-logloss:0.60442 [188] validation_0-logloss:0.60432 [189] validation_0-logloss:0.60451 [190] validation_0-logloss:0.60469 [191] validation_0-logloss:0.60473 [192] validation_0-logloss:0.60455 [193] validation_0-logloss:0.60426 [194] validation_0-logloss:0.60474 [195] validation_0-logloss:0.60463 [196] validation_0-logloss:0.60473 [197] validation_0-logloss:0.60477 [198] validation_0-logloss:0.60532 [199] validation_0-logloss:0.60515 [200] validation_0-logloss:0.60518 [201] validation_0-logloss:0.60515 [202] validation_0-logloss:0.60500 [203] validation_0-logloss:0.60524 [204] validation_0-logloss:0.60522 [205] validation_0-logloss:0.60516 [206] validation_0-logloss:0.60473 [207] validation_0-logloss:0.60459 [208] validation_0-logloss:0.60468 [209] validation_0-logloss:0.60497 [210] validation_0-logloss:0.60538 [211] validation_0-logloss:0.60584 [212] validation_0-logloss:0.60534 [213] validation_0-logloss:0.60530 [214] validation_0-logloss:0.60557 [215] validation_0-logloss:0.60565 [216] validation_0-logloss:0.60610 [217] validation_0-logloss:0.60636 [218] validation_0-logloss:0.60650 [219] validation_0-logloss:0.60661 [220] validation_0-logloss:0.60655 [221] validation_0-logloss:0.60701 [222] validation_0-logloss:0.60714 [223] validation_0-logloss:0.60700 [224] validation_0-logloss:0.60750 [225] validation_0-logloss:0.60757 [226] validation_0-logloss:0.60762 [227] validation_0-logloss:0.60722 [228] validation_0-logloss:0.60706 [229] validation_0-logloss:0.60686 [230] validation_0-logloss:0.60654 [231] validation_0-logloss:0.60657 [232] validation_0-logloss:0.60676 [233] validation_0-logloss:0.60664 [234] validation_0-logloss:0.60668 [235] validation_0-logloss:0.60694 [236] validation_0-logloss:0.60680 [237] validation_0-logloss:0.60677 [238] validation_0-logloss:0.60649 [239] validation_0-logloss:0.60630 [240] validation_0-logloss:0.60609 [241] validation_0-logloss:0.60574 [242] validation_0-logloss:0.60603 [243] validation_0-logloss:0.60609 [244] validation_0-logloss:0.60588 [245] validation_0-logloss:0.60599 [246] validation_0-logloss:0.60576 [247] validation_0-logloss:0.60621 [248] validation_0-logloss:0.60669 [249] validation_0-logloss:0.60657 [250] validation_0-logloss:0.60696 [251] validation_0-logloss:0.60693 [252] validation_0-logloss:0.60653 [253] validation_0-logloss:0.60678 [254] validation_0-logloss:0.60658 [255] validation_0-logloss:0.60608 [256] validation_0-logloss:0.60590 [257] validation_0-logloss:0.60587 [258] validation_0-logloss:0.60539 [259] validation_0-logloss:0.60528 [260] validation_0-logloss:0.60510 [261] validation_0-logloss:0.60560 [262] validation_0-logloss:0.60583 [263] validation_0-logloss:0.60592 [264] validation_0-logloss:0.60591 [265] validation_0-logloss:0.60541 [266] validation_0-logloss:0.60535 [267] validation_0-logloss:0.60566 [268] validation_0-logloss:0.60543 [269] validation_0-logloss:0.60562 [270] validation_0-logloss:0.60554 [271] validation_0-logloss:0.60535 [272] validation_0-logloss:0.60563 [273] validation_0-logloss:0.60566 [274] validation_0-logloss:0.60529 [275] validation_0-logloss:0.60534 [276] validation_0-logloss:0.60551 [277] validation_0-logloss:0.60549 [278] validation_0-logloss:0.60546 [279] validation_0-logloss:0.60526 [280] validation_0-logloss:0.60515 [281] validation_0-logloss:0.60527 [282] validation_0-logloss:0.60511 [283] validation_0-logloss:0.60428 [284] validation_0-logloss:0.60414 [285] validation_0-logloss:0.60400 [286] validation_0-logloss:0.60428 [287] validation_0-logloss:0.60393 [288] validation_0-logloss:0.60395 [289] validation_0-logloss:0.60418 [290] validation_0-logloss:0.60400 [291] validation_0-logloss:0.60397 [292] validation_0-logloss:0.60400 [293] validation_0-logloss:0.60457 [294] validation_0-logloss:0.60491 [295] validation_0-logloss:0.60482 [296] validation_0-logloss:0.60503 [297] validation_0-logloss:0.60526 [298] validation_0-logloss:0.60520 [299] validation_0-logloss:0.60509 [300] validation_0-logloss:0.60484 [301] validation_0-logloss:0.60457 [302] validation_0-logloss:0.60474 [303] validation_0-logloss:0.60462 [304] validation_0-logloss:0.60472 [305] validation_0-logloss:0.60515 [306] validation_0-logloss:0.60481 [307] validation_0-logloss:0.60471 [308] validation_0-logloss:0.60469 [309] validation_0-logloss:0.60460 [310] validation_0-logloss:0.60466 [311] validation_0-logloss:0.60474 [312] validation_0-logloss:0.60487 [313] validation_0-logloss:0.60508 [314] validation_0-logloss:0.60515 [315] validation_0-logloss:0.60525 [316] validation_0-logloss:0.60464 [317] validation_0-logloss:0.60475 [318] validation_0-logloss:0.60480 [319] validation_0-logloss:0.60429 [320] validation_0-logloss:0.60425 [321] validation_0-logloss:0.60446 [322] validation_0-logloss:0.60442 [323] validation_0-logloss:0.60446 [324] validation_0-logloss:0.60472 [325] validation_0-logloss:0.60480 [326] validation_0-logloss:0.60463 [327] validation_0-logloss:0.60456 [328] validation_0-logloss:0.60465 [329] validation_0-logloss:0.60469 [330] validation_0-logloss:0.60477 [331] validation_0-logloss:0.60517 [332] validation_0-logloss:0.60530 [333] validation_0-logloss:0.60528 [334] validation_0-logloss:0.60485 [335] validation_0-logloss:0.60464 [336] validation_0-logloss:0.60450 [337] validation_0-logloss:0.60485 [338] validation_0-logloss:0.60507 [339] validation_0-logloss:0.60503 [340] validation_0-logloss:0.60486 [341] validation_0-logloss:0.60507 [342] validation_0-logloss:0.60502 [343] validation_0-logloss:0.60454 [344] validation_0-logloss:0.60476 [345] validation_0-logloss:0.60511 [346] validation_0-logloss:0.60532 [347] validation_0-logloss:0.60501 [348] validation_0-logloss:0.60510 [349] validation_0-logloss:0.60524 [350] validation_0-logloss:0.60553 [351] validation_0-logloss:0.60552 [352] validation_0-logloss:0.60485 [353] validation_0-logloss:0.60502 [354] validation_0-logloss:0.60475 [355] validation_0-logloss:0.60484 [356] validation_0-logloss:0.60499 [357] validation_0-logloss:0.60494 [358] validation_0-logloss:0.60474 [359] validation_0-logloss:0.60461 [360] validation_0-logloss:0.60477 [361] validation_0-logloss:0.60355 [362] validation_0-logloss:0.60340 [363] validation_0-logloss:0.60368 [364] validation_0-logloss:0.60373 [365] validation_0-logloss:0.60382 [366] validation_0-logloss:0.60382 [367] validation_0-logloss:0.60366 [368] validation_0-logloss:0.60367 [369] validation_0-logloss:0.60350 [370] validation_0-logloss:0.60348 [371] validation_0-logloss:0.60336 [372] validation_0-logloss:0.60300 [373] validation_0-logloss:0.60334 [374] validation_0-logloss:0.60330 [375] validation_0-logloss:0.60371 [376] validation_0-logloss:0.60409 [377] validation_0-logloss:0.60424 [378] validation_0-logloss:0.60393 [379] validation_0-logloss:0.60401 [380] validation_0-logloss:0.60403 [381] validation_0-logloss:0.60395 [382] validation_0-logloss:0.60366 [383] validation_0-logloss:0.60358 [384] validation_0-logloss:0.60356 [385] validation_0-logloss:0.60394 [386] validation_0-logloss:0.60367 [387] validation_0-logloss:0.60399 [388] validation_0-logloss:0.60392 [389] validation_0-logloss:0.60449 [390] validation_0-logloss:0.60467 [391] validation_0-logloss:0.60516 [392] validation_0-logloss:0.60514 [393] validation_0-logloss:0.60507 [394] validation_0-logloss:0.60519 [395] validation_0-logloss:0.60530 [396] validation_0-logloss:0.60509 [397] validation_0-logloss:0.60484 [398] validation_0-logloss:0.60473 [399] validation_0-logloss:0.60446 [400] validation_0-logloss:0.60440 [401] validation_0-logloss:0.60455 [402] validation_0-logloss:0.60452 [403] validation_0-logloss:0.60424 [404] validation_0-logloss:0.60409 [405] validation_0-logloss:0.60405 [406] validation_0-logloss:0.60397 [407] validation_0-logloss:0.60402 [408] validation_0-logloss:0.60391 [409] validation_0-logloss:0.60378 [410] validation_0-logloss:0.60382 [411] validation_0-logloss:0.60386 [412] validation_0-logloss:0.60359 [413] validation_0-logloss:0.60344 [414] validation_0-logloss:0.60370 [415] validation_0-logloss:0.60382 [416] validation_0-logloss:0.60394 [417] validation_0-logloss:0.60401 [418] validation_0-logloss:0.60385 [419] validation_0-logloss:0.60374 [420] validation_0-logloss:0.60382 [421] validation_0-logloss:0.60395 [422] validation_0-logloss:0.60394 [423] validation_0-logloss:0.60395 [424] validation_0-logloss:0.60385 [425] validation_0-logloss:0.60374 [426] validation_0-logloss:0.60343 [427] validation_0-logloss:0.60384 [428] validation_0-logloss:0.60435 [429] validation_0-logloss:0.60471 [430] validation_0-logloss:0.60426 [431] validation_0-logloss:0.60393 [432] validation_0-logloss:0.60411 [433] validation_0-logloss:0.60418 [434] validation_0-logloss:0.60446 [435] validation_0-logloss:0.60360 [436] validation_0-logloss:0.60333 [437] validation_0-logloss:0.60326 [438] validation_0-logloss:0.60335 [439] validation_0-logloss:0.60329 [440] validation_0-logloss:0.60312 [441] validation_0-logloss:0.60343 [442] validation_0-logloss:0.60387 [443] validation_0-logloss:0.60386 [444] validation_0-logloss:0.60377 [445] validation_0-logloss:0.60369 [446] validation_0-logloss:0.60395 [447] validation_0-logloss:0.60427 [448] validation_0-logloss:0.60443 [449] validation_0-logloss:0.60459 [450] validation_0-logloss:0.60452 [451] validation_0-logloss:0.60487 [452] validation_0-logloss:0.60499 [453] validation_0-logloss:0.60422 [454] validation_0-logloss:0.60429 [455] validation_0-logloss:0.60423 [456] validation_0-logloss:0.60457 [457] validation_0-logloss:0.60458 [458] validation_0-logloss:0.60459 [459] validation_0-logloss:0.60461 [460] validation_0-logloss:0.60487 [461] validation_0-logloss:0.60523 [462] validation_0-logloss:0.60522 [463] validation_0-logloss:0.60511 [464] validation_0-logloss:0.60496 [465] validation_0-logloss:0.60522 [466] validation_0-logloss:0.60537 [467] validation_0-logloss:0.60529 [468] validation_0-logloss:0.60488 [469] validation_0-logloss:0.60495 [470] validation_0-logloss:0.60476 [471] validation_0-logloss:0.60436 [472] validation_0-logloss:0.60453 [473] validation_0-logloss:0.60423 [474] validation_0-logloss:0.60389 [475] validation_0-logloss:0.60389 [476] validation_0-logloss:0.60365 [477] validation_0-logloss:0.60376 [478] validation_0-logloss:0.60377 [479] validation_0-logloss:0.60350 [480] validation_0-logloss:0.60341 [481] validation_0-logloss:0.60335 [482] validation_0-logloss:0.60350 [483] validation_0-logloss:0.60303 [484] validation_0-logloss:0.60329 [485] validation_0-logloss:0.60326 [486] validation_0-logloss:0.60336 [487] validation_0-logloss:0.60346 [488] validation_0-logloss:0.60365 [489] validation_0-logloss:0.60350 [490] validation_0-logloss:0.60350 [491] validation_0-logloss:0.60373 [492] validation_0-logloss:0.60363 [493] validation_0-logloss:0.60397 [494] validation_0-logloss:0.60403 [495] validation_0-logloss:0.60371 [496] validation_0-logloss:0.60382 [497] validation_0-logloss:0.60378 [498] validation_0-logloss:0.60390 [499] validation_0-logloss:0.60406 [500] validation_0-logloss:0.60411 [501] validation_0-logloss:0.60401 [502] validation_0-logloss:0.60416 [503] validation_0-logloss:0.60469 [504] validation_0-logloss:0.60466 [505] validation_0-logloss:0.60460 [506] validation_0-logloss:0.60480 [507] validation_0-logloss:0.60445 [508] validation_0-logloss:0.60471 [509] validation_0-logloss:0.60446 [510] validation_0-logloss:0.60447 [511] validation_0-logloss:0.60452 [512] validation_0-logloss:0.60432 [513] validation_0-logloss:0.60395 [514] validation_0-logloss:0.60411 [515] validation_0-logloss:0.60397 [516] validation_0-logloss:0.60418 [517] validation_0-logloss:0.60432 [518] validation_0-logloss:0.60424 [519] validation_0-logloss:0.60419 [520] validation_0-logloss:0.60442 [521] validation_0-logloss:0.60408 [522] validation_0-logloss:0.60413 [523] validation_0-logloss:0.60399 [524] validation_0-logloss:0.60416 [525] validation_0-logloss:0.60426 [526] validation_0-logloss:0.60448 [527] validation_0-logloss:0.60472 [528] validation_0-logloss:0.60455 [529] validation_0-logloss:0.60461 [530] validation_0-logloss:0.60446 [531] validation_0-logloss:0.60432 [532] validation_0-logloss:0.60416 [533] validation_0-logloss:0.60405 [534] validation_0-logloss:0.60423 [535] validation_0-logloss:0.60428 [536] validation_0-logloss:0.60378 [537] validation_0-logloss:0.60372 [538] validation_0-logloss:0.60382 [539] validation_0-logloss:0.60379 [540] validation_0-logloss:0.60388 [541] validation_0-logloss:0.60372 [542] validation_0-logloss:0.60382 [543] validation_0-logloss:0.60378 [544] validation_0-logloss:0.60367 [545] validation_0-logloss:0.60397 [546] validation_0-logloss:0.60379 [547] validation_0-logloss:0.60401 [548] validation_0-logloss:0.60416 [549] validation_0-logloss:0.60442 [550] validation_0-logloss:0.60443 [551] validation_0-logloss:0.60432 [552] validation_0-logloss:0.60414 [553] validation_0-logloss:0.60427 [554] validation_0-logloss:0.60457 [555] validation_0-logloss:0.60423 [556] validation_0-logloss:0.60474 [557] validation_0-logloss:0.60459 [558] validation_0-logloss:0.60463 [559] validation_0-logloss:0.60445 [560] validation_0-logloss:0.60412 [561] validation_0-logloss:0.60404 [562] validation_0-logloss:0.60418 [563] validation_0-logloss:0.60409 [564] validation_0-logloss:0.60425 [565] validation_0-logloss:0.60470 [566] validation_0-logloss:0.60461 [567] validation_0-logloss:0.60490 [568] validation_0-logloss:0.60464 [569] validation_0-logloss:0.60456 [570] validation_0-logloss:0.60474 [571] validation_0-logloss:0.60472 [572] validation_0-logloss:0.60466 [573] validation_0-logloss:0.60453 [574] validation_0-logloss:0.60497 [575] validation_0-logloss:0.60498 [576] validation_0-logloss:0.60512 [577] validation_0-logloss:0.60532 [578] validation_0-logloss:0.60528 [579] validation_0-logloss:0.60516 [580] validation_0-logloss:0.60537 [581] validation_0-logloss:0.60552 [582] validation_0-logloss:0.60537 [583] validation_0-logloss:0.60543 [584] validation_0-logloss:0.60534 [585] validation_0-logloss:0.60534 [586] validation_0-logloss:0.60523 [587] validation_0-logloss:0.60507 [588] validation_0-logloss:0.60517 [589] validation_0-logloss:0.60532 [590] validation_0-logloss:0.60511 [591] validation_0-logloss:0.60522 [592] validation_0-logloss:0.60522 [593] validation_0-logloss:0.60500 [594] validation_0-logloss:0.60504 [595] validation_0-logloss:0.60453 [596] validation_0-logloss:0.60472 [597] validation_0-logloss:0.60476 [598] validation_0-logloss:0.60454 [599] validation_0-logloss:0.60482 [600] validation_0-logloss:0.60493 [601] validation_0-logloss:0.60508 [602] validation_0-logloss:0.60498 [603] validation_0-logloss:0.60468 [604] validation_0-logloss:0.60489 [605] validation_0-logloss:0.60471 [606] validation_0-logloss:0.60445 [607] validation_0-logloss:0.60449 [608] validation_0-logloss:0.60416 [609] validation_0-logloss:0.60470 [610] validation_0-logloss:0.60475 [611] validation_0-logloss:0.60463 [612] validation_0-logloss:0.60459 [613] validation_0-logloss:0.60463 [614] validation_0-logloss:0.60483 [615] validation_0-logloss:0.60463 [616] validation_0-logloss:0.60455 [617] validation_0-logloss:0.60469 [618] validation_0-logloss:0.60512 [619] validation_0-logloss:0.60497 [620] validation_0-logloss:0.60498 [621] validation_0-logloss:0.60506 [622] validation_0-logloss:0.60505 [623] validation_0-logloss:0.60511 [624] validation_0-logloss:0.60516 [625] validation_0-logloss:0.60471 [626] validation_0-logloss:0.60465 [627] validation_0-logloss:0.60462 [628] validation_0-logloss:0.60465 [629] validation_0-logloss:0.60461 [630] validation_0-logloss:0.60509 [631] validation_0-logloss:0.60494 [632] validation_0-logloss:0.60538 [633] validation_0-logloss:0.60578 [634] validation_0-logloss:0.60573 [635] validation_0-logloss:0.60580 [636] validation_0-logloss:0.60596 [637] validation_0-logloss:0.60593 [638] validation_0-logloss:0.60586 [639] validation_0-logloss:0.60597 [640] validation_0-logloss:0.60609 [641] validation_0-logloss:0.60606 [642] validation_0-logloss:0.60550 [643] validation_0-logloss:0.60544 [644] validation_0-logloss:0.60542 [645] validation_0-logloss:0.60576 [646] validation_0-logloss:0.60561 [647] validation_0-logloss:0.60587 [648] validation_0-logloss:0.60584 [649] validation_0-logloss:0.60494 [650] validation_0-logloss:0.60505 [651] validation_0-logloss:0.60494 [652] validation_0-logloss:0.60488 [653] validation_0-logloss:0.60494 [654] validation_0-logloss:0.60439 [655] validation_0-logloss:0.60448 [656] validation_0-logloss:0.60448 [657] validation_0-logloss:0.60455 [658] validation_0-logloss:0.60459 [659] validation_0-logloss:0.60436 [660] validation_0-logloss:0.60424 [661] validation_0-logloss:0.60412 [662] validation_0-logloss:0.60409 [663] validation_0-logloss:0.60410 [664] validation_0-logloss:0.60421 [665] validation_0-logloss:0.60425 [666] validation_0-logloss:0.60453 [667] validation_0-logloss:0.60444 [668] validation_0-logloss:0.60434 [669] validation_0-logloss:0.60442 [670] validation_0-logloss:0.60437 [671] validation_0-logloss:0.60456 [672] validation_0-logloss:0.60458 [673] validation_0-logloss:0.60443 [674] validation_0-logloss:0.60407 [675] validation_0-logloss:0.60402 [676] validation_0-logloss:0.60406 [677] validation_0-logloss:0.60406 [678] validation_0-logloss:0.60412 [679] validation_0-logloss:0.60435 [680] validation_0-logloss:0.60433 [681] validation_0-logloss:0.60408 [682] validation_0-logloss:0.60389 [683] validation_0-logloss:0.60368 [684] validation_0-logloss:0.60364 [685] validation_0-logloss:0.60370 [686] validation_0-logloss:0.60360 [687] validation_0-logloss:0.60370 [688] validation_0-logloss:0.60363 [689] validation_0-logloss:0.60367 [690] validation_0-logloss:0.60391 [691] validation_0-logloss:0.60374 [692] validation_0-logloss:0.60393 [693] validation_0-logloss:0.60394 [694] validation_0-logloss:0.60422 [695] validation_0-logloss:0.60424 [696] validation_0-logloss:0.60417 [697] validation_0-logloss:0.60411 [698] validation_0-logloss:0.60426 [699] validation_0-logloss:0.60473 [700] validation_0-logloss:0.60487 [701] validation_0-logloss:0.60560 [702] validation_0-logloss:0.60577 [703] validation_0-logloss:0.60570 [704] validation_0-logloss:0.60535 [705] validation_0-logloss:0.60524 [706] validation_0-logloss:0.60532 [707] validation_0-logloss:0.60555 [708] validation_0-logloss:0.60548 [709] validation_0-logloss:0.60556 [710] validation_0-logloss:0.60569 [711] validation_0-logloss:0.60592 [712] validation_0-logloss:0.60615 [713] validation_0-logloss:0.60617 [714] validation_0-logloss:0.60631 [715] validation_0-logloss:0.60655 [716] validation_0-logloss:0.60684 [717] validation_0-logloss:0.60676 [718] validation_0-logloss:0.60646 [719] validation_0-logloss:0.60614 [720] validation_0-logloss:0.60583 [721] validation_0-logloss:0.60571 [722] validation_0-logloss:0.60550 [723] validation_0-logloss:0.60545 [724] validation_0-logloss:0.60471 [725] validation_0-logloss:0.60475 [726] validation_0-logloss:0.60462 [727] validation_0-logloss:0.60456 [728] validation_0-logloss:0.60422 [729] validation_0-logloss:0.60413 [730] validation_0-logloss:0.60415 [731] validation_0-logloss:0.60436 [732] validation_0-logloss:0.60453 [733] validation_0-logloss:0.60435 [734] validation_0-logloss:0.60413 [735] validation_0-logloss:0.60428 [736] validation_0-logloss:0.60421 [737] validation_0-logloss:0.60376 [738] validation_0-logloss:0.60376 [739] validation_0-logloss:0.60379 [740] validation_0-logloss:0.60400 [741] validation_0-logloss:0.60416 [742] validation_0-logloss:0.60410 [743] validation_0-logloss:0.60400 [744] validation_0-logloss:0.60408 [745] validation_0-logloss:0.60419 [746] validation_0-logloss:0.60411 [747] validation_0-logloss:0.60401 [748] validation_0-logloss:0.60395 [749] validation_0-logloss:0.60409 [750] validation_0-logloss:0.60397 [751] validation_0-logloss:0.60388 [752] validation_0-logloss:0.60448 [753] validation_0-logloss:0.60439 [754] validation_0-logloss:0.60436 [755] validation_0-logloss:0.60419 [756] validation_0-logloss:0.60411 [757] validation_0-logloss:0.60439 [758] validation_0-logloss:0.60456 [759] validation_0-logloss:0.60472 [760] validation_0-logloss:0.60418 [761] validation_0-logloss:0.60395 [762] validation_0-logloss:0.60395 [763] validation_0-logloss:0.60384 [764] validation_0-logloss:0.60380 [765] validation_0-logloss:0.60412 [766] validation_0-logloss:0.60415 [767] validation_0-logloss:0.60427 [768] validation_0-logloss:0.60411 [769] validation_0-logloss:0.60426 [770] validation_0-logloss:0.60430 [771] validation_0-logloss:0.60455 [772] validation_0-logloss:0.60482 [773] validation_0-logloss:0.60490 [774] validation_0-logloss:0.60482 [775] validation_0-logloss:0.60506 [776] validation_0-logloss:0.60499 [777] validation_0-logloss:0.60479 [778] validation_0-logloss:0.60462 [779] validation_0-logloss:0.60462 [780] validation_0-logloss:0.60461 [781] validation_0-logloss:0.60505 [782] validation_0-logloss:0.60512 [783] validation_0-logloss:0.60534 [784] validation_0-logloss:0.60552 [785] validation_0-logloss:0.60558 [786] validation_0-logloss:0.60575 [787] validation_0-logloss:0.60570 [788] validation_0-logloss:0.60578 [789] validation_0-logloss:0.60564 [790] validation_0-logloss:0.60568 [791] validation_0-logloss:0.60587 [792] validation_0-logloss:0.60602 [793] validation_0-logloss:0.60574 [794] validation_0-logloss:0.60576 [795] validation_0-logloss:0.60569 [796] validation_0-logloss:0.60569 [797] validation_0-logloss:0.60633 [798] validation_0-logloss:0.60678 [799] validation_0-logloss:0.60706 [800] validation_0-logloss:0.60701 [801] validation_0-logloss:0.60686 [802] validation_0-logloss:0.60681 [803] validation_0-logloss:0.60680 [804] validation_0-logloss:0.60670 [805] validation_0-logloss:0.60700 [806] validation_0-logloss:0.60709 [807] validation_0-logloss:0.60697 [808] validation_0-logloss:0.60676 [809] validation_0-logloss:0.60660 [810] validation_0-logloss:0.60628 [811] validation_0-logloss:0.60646 [812] validation_0-logloss:0.60627 [813] validation_0-logloss:0.60681 [814] validation_0-logloss:0.60678 [815] validation_0-logloss:0.60702 [816] validation_0-logloss:0.60666 [817] validation_0-logloss:0.60681 [818] validation_0-logloss:0.60716 [819] validation_0-logloss:0.60757 [820] validation_0-logloss:0.60738 [821] validation_0-logloss:0.60758 [822] validation_0-logloss:0.60761 [823] validation_0-logloss:0.60766 [824] validation_0-logloss:0.60746 [825] validation_0-logloss:0.60728 [826] validation_0-logloss:0.60736 [827] validation_0-logloss:0.60739 [828] validation_0-logloss:0.60743 [829] validation_0-logloss:0.60748 [830] validation_0-logloss:0.60727 [831] validation_0-logloss:0.60745 [832] validation_0-logloss:0.60717 [833] validation_0-logloss:0.60697 [834] validation_0-logloss:0.60676 [835] validation_0-logloss:0.60640 [836] validation_0-logloss:0.60708 [837] validation_0-logloss:0.60744 [838] validation_0-logloss:0.60775 [839] validation_0-logloss:0.60798 [840] validation_0-logloss:0.60808 [841] validation_0-logloss:0.60765 [842] validation_0-logloss:0.60776 [843] validation_0-logloss:0.60782 [844] validation_0-logloss:0.60783 [845] validation_0-logloss:0.60776 [846] validation_0-logloss:0.60800 [847] validation_0-logloss:0.60782 [848] validation_0-logloss:0.60815 [849] validation_0-logloss:0.60799 [850] validation_0-logloss:0.60784 [851] validation_0-logloss:0.60796 [852] validation_0-logloss:0.60805 [853] validation_0-logloss:0.60803 [854] validation_0-logloss:0.60794 [855] validation_0-logloss:0.60811 [856] validation_0-logloss:0.60789 [857] validation_0-logloss:0.60779 [858] validation_0-logloss:0.60777 [859] validation_0-logloss:0.60769 [860] validation_0-logloss:0.60778 [861] validation_0-logloss:0.60765 [862] validation_0-logloss:0.60734 [863] validation_0-logloss:0.60729 [864] validation_0-logloss:0.60720 [865] validation_0-logloss:0.60696 [866] validation_0-logloss:0.60701 [867] validation_0-logloss:0.60726 [868] validation_0-logloss:0.60718 [869] validation_0-logloss:0.60698 [870] validation_0-logloss:0.60683 [871] validation_0-logloss:0.60689 [872] validation_0-logloss:0.60708 [873] validation_0-logloss:0.60722 [874] validation_0-logloss:0.60703 [875] validation_0-logloss:0.60677 [876] validation_0-logloss:0.60664 [877] validation_0-logloss:0.60656 [878] validation_0-logloss:0.60645 [879] validation_0-logloss:0.60644 [880] validation_0-logloss:0.60642 [881] validation_0-logloss:0.60628 [882] validation_0-logloss:0.60623 [883] validation_0-logloss:0.60586 [884] validation_0-logloss:0.60563 [885] validation_0-logloss:0.60562 [886] validation_0-logloss:0.60593 [887] validation_0-logloss:0.60599 [888] validation_0-logloss:0.60578 [889] validation_0-logloss:0.60594 [890] validation_0-logloss:0.60606 [891] validation_0-logloss:0.60617 [892] validation_0-logloss:0.60616 [893] validation_0-logloss:0.60620 [894] validation_0-logloss:0.60611 [895] validation_0-logloss:0.60604 [896] validation_0-logloss:0.60608 [897] validation_0-logloss:0.60654 [898] validation_0-logloss:0.60656 [899] validation_0-logloss:0.60647 [900] validation_0-logloss:0.60649 [901] validation_0-logloss:0.60647 [902] validation_0-logloss:0.60646 [903] validation_0-logloss:0.60673 [904] validation_0-logloss:0.60678 [905] validation_0-logloss:0.60708 [906] validation_0-logloss:0.60672 [907] validation_0-logloss:0.60680 [908] validation_0-logloss:0.60665 [909] validation_0-logloss:0.60660 [910] validation_0-logloss:0.60646 [911] validation_0-logloss:0.60655 [912] validation_0-logloss:0.60660 [913] validation_0-logloss:0.60635 [914] validation_0-logloss:0.60667 [915] validation_0-logloss:0.60676 [916] validation_0-logloss:0.60678 [917] validation_0-logloss:0.60682 [918] validation_0-logloss:0.60632 [919] validation_0-logloss:0.60579 [920] validation_0-logloss:0.60602 [921] validation_0-logloss:0.60611 [922] validation_0-logloss:0.60623 [923] validation_0-logloss:0.60628 [924] validation_0-logloss:0.60643 [925] validation_0-logloss:0.60628 [926] validation_0-logloss:0.60611 [927] validation_0-logloss:0.60583 [928] validation_0-logloss:0.60574 [929] validation_0-logloss:0.60544 [930] validation_0-logloss:0.60559 [931] validation_0-logloss:0.60561 [932] validation_0-logloss:0.60572 [933] validation_0-logloss:0.60564 [934] validation_0-logloss:0.60589 [935] validation_0-logloss:0.60591 [936] validation_0-logloss:0.60569 [937] validation_0-logloss:0.60572 [938] validation_0-logloss:0.60552 [939] validation_0-logloss:0.60558 [940] validation_0-logloss:0.60522 [941] validation_0-logloss:0.60468 [942] validation_0-logloss:0.60427 [943] validation_0-logloss:0.60452 [944] validation_0-logloss:0.60500 [945] validation_0-logloss:0.60481 [946] validation_0-logloss:0.60507 [947] validation_0-logloss:0.60503 [948] validation_0-logloss:0.60505 [949] validation_0-logloss:0.60494 [950] validation_0-logloss:0.60439 [951] validation_0-logloss:0.60454 [952] validation_0-logloss:0.60453 [953] validation_0-logloss:0.60467 [954] validation_0-logloss:0.60456 [955] validation_0-logloss:0.60452 [956] validation_0-logloss:0.60464 [957] validation_0-logloss:0.60494 [958] validation_0-logloss:0.60493 [959] validation_0-logloss:0.60518 [960] validation_0-logloss:0.60535 [961] validation_0-logloss:0.60534 [962] validation_0-logloss:0.60530 [963] validation_0-logloss:0.60515 [964] validation_0-logloss:0.60497 [965] validation_0-logloss:0.60475 [966] validation_0-logloss:0.60487 [967] validation_0-logloss:0.60496 [968] validation_0-logloss:0.60503 [969] validation_0-logloss:0.60510 [970] validation_0-logloss:0.60502 [971] validation_0-logloss:0.60511 [972] validation_0-logloss:0.60512 [973] validation_0-logloss:0.60506 [974] validation_0-logloss:0.60495 [975] validation_0-logloss:0.60517 [976] validation_0-logloss:0.60527 [977] validation_0-logloss:0.60520 [978] validation_0-logloss:0.60499 [979] validation_0-logloss:0.60524 [980] validation_0-logloss:0.60502 [981] validation_0-logloss:0.60549 [982] validation_0-logloss:0.60578 [983] validation_0-logloss:0.60528 [984] validation_0-logloss:0.60477 [985] validation_0-logloss:0.60478 [986] validation_0-logloss:0.60509 [987] validation_0-logloss:0.60460 [988] validation_0-logloss:0.60440 [989] validation_0-logloss:0.60463 [990] validation_0-logloss:0.60491 [991] validation_0-logloss:0.60490 [992] validation_0-logloss:0.60493 [993] validation_0-logloss:0.60501 [994] validation_0-logloss:0.60499 [995] validation_0-logloss:0.60497 [996] validation_0-logloss:0.60508 [997] validation_0-logloss:0.60511 [998] validation_0-logloss:0.60555 [999] validation_0-logloss:0.60554

step-04 確認(rèn)最優(yōu)參數(shù)

print(clf.best_params_) {'base_score': 0.5, 'colsample_bylevel': 0.7, 'colsample_bynode': 0.7, 'colsample_bytree': 0.6, 'gamma': 0, 'learning_rate': 0.1, 'max_bin': 12, 'max_depth': 6, 'min_child_weight': 30, 'n_estimators': 1000, 'reg_alpha': 2, 'reg_lambda': 3, 'subsample': 0.65}

step-05 選取最優(yōu)模型

best_model=clf.best_estimator_

step-06 評(píng)價(jià)最優(yōu)模型

model_eval2(best_model, train.values, test.values) train_roc_auc_score: 0.8766644056264636 test_roc_auc_score: 0.7278343023255814 train_accuracy_score: 0.8 test_accuracy_score: 0.6833333333333333 train_precision_score: 0.8069963811821471 test__precision_score: 0.7162921348314607 train_recall_score: 0.8479087452471483 test_recall_score: 0.7412790697674418 train_f1_score: 0.8269468479604452 test_f1_score: 0.7285714285714285

step-07 保存并調(diào)用模型

joblib.dump(best_model , r'D:\Ensemble_Learning\xgboostinfo\xgboostgridbest.model') best_model=joblib.load( r'D:\Ensemble_Learning\xgboostinfo\xgboostgridbest.model') model_eval2(best_model, train.values, test.values) train_roc_auc_score: 0.8766644056264636 test_roc_auc_score: 0.7278343023255814 train_accuracy_score: 0.8 test_accuracy_score: 0.6833333333333333 train_precision_score: 0.8069963811821471 test__precision_score: 0.7162921348314607 train_recall_score: 0.8479087452471483 test_recall_score: 0.7412790697674418 train_f1_score: 0.8269468479604452 test_f1_score: 0.7285714285714285

總結(jié)

以上是生活随笔為你收集整理的集成学习01_xgboost参数讲解与实战的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

国产激情精品一区二区三区 | 国产手机在线αⅴ片无码观看 | 成人一在线视频日韩国产 | 国产人妻精品一区二区三区不卡 | 免费国产成人高清在线观看网站 | 亚洲欧美中文字幕5发布 | 国产精品美女久久久网av | 亚洲七七久久桃花影院 | 国产欧美亚洲精品a | 岛国片人妻三上悠亚 | 精品国偷自产在线 | 最新国产乱人伦偷精品免费网站 | www国产亚洲精品久久久日本 | 无码午夜成人1000部免费视频 | 黑森林福利视频导航 | 免费播放一区二区三区 | 久久精品女人的天堂av | 少妇无套内谢久久久久 | 国产成人无码一二三区视频 | 久久综合网欧美色妞网 | 麻豆精产国品 | 无码国内精品人妻少妇 | 最近的中文字幕在线看视频 | 欧美成人高清在线播放 | 亚洲精品一区二区三区在线 | 欧美精品在线观看 | 久久综合香蕉国产蜜臀av | 欧美 日韩 亚洲 在线 | 日日麻批免费40分钟无码 | 九九在线中文字幕无码 | 久久精品人人做人人综合 | 日本熟妇乱子伦xxxx | 欧美自拍另类欧美综合图片区 | 内射老妇bbwx0c0ck | 欧美成人免费全部网站 | 精品国产一区二区三区四区在线看 | 成人欧美一区二区三区 | aⅴ在线视频男人的天堂 | 美女黄网站人色视频免费国产 | 97人妻精品一区二区三区 | а√天堂www在线天堂小说 | 国产精品久久久久久亚洲毛片 | 欧洲欧美人成视频在线 | 国色天香社区在线视频 | 日韩无套无码精品 | 国产明星裸体无码xxxx视频 | 久久人人爽人人爽人人片ⅴ | 亚洲人成网站免费播放 | 东京热无码av男人的天堂 | 日本欧美一区二区三区乱码 | 久久久久se色偷偷亚洲精品av | 亚洲国产精品无码一区二区三区 | 激情人妻另类人妻伦 | 久久久久99精品国产片 | 亚洲熟女一区二区三区 | 精品成人av一区二区三区 | 十八禁真人啪啪免费网站 | 亚洲最大成人网站 | av无码不卡在线观看免费 | 性色av无码免费一区二区三区 | 夜精品a片一区二区三区无码白浆 | √天堂资源地址中文在线 | 婷婷综合久久中文字幕蜜桃三电影 | 成人试看120秒体验区 | 欧美人与牲动交xxxx | 亚洲日本一区二区三区在线 | 色五月丁香五月综合五月 | 无码帝国www无码专区色综合 | 精品成人av一区二区三区 | 丁香花在线影院观看在线播放 | 精品熟女少妇av免费观看 | 狠狠色欧美亚洲狠狠色www | 亚洲精品鲁一鲁一区二区三区 | 自拍偷自拍亚洲精品10p | 亚洲精品一区二区三区大桥未久 | 国产在线aaa片一区二区99 | 国产精品久久久久7777 | 无码毛片视频一区二区本码 | 强开小婷嫩苞又嫩又紧视频 | 国内精品久久久久久中文字幕 | 无码纯肉视频在线观看 | 免费观看又污又黄的网站 | 国产一区二区不卡老阿姨 | 成人无码视频在线观看网站 | 丝袜 中出 制服 人妻 美腿 | 国产午夜亚洲精品不卡 | 久久精品国产99久久6动漫 | 成人欧美一区二区三区 | 国产精品无码永久免费888 | 国产口爆吞精在线视频 | 国产精品国产三级国产专播 | 亚洲精品www久久久 | 精品久久久无码中文字幕 | 国产精品香蕉在线观看 | 麻豆成人精品国产免费 | 欧美日本精品一区二区三区 | 国産精品久久久久久久 | 久久久精品欧美一区二区免费 | 麻豆国产丝袜白领秘书在线观看 | 人妻aⅴ无码一区二区三区 | 2019午夜福利不卡片在线 | 丰满人妻一区二区三区免费视频 | 日产国产精品亚洲系列 | 免费无码一区二区三区蜜桃大 | a国产一区二区免费入口 | 97夜夜澡人人双人人人喊 | 熟妇人妻无乱码中文字幕 | 在线欧美精品一区二区三区 | 亚洲 欧美 激情 小说 另类 | 久久亚洲中文字幕无码 | 波多野42部无码喷潮在线 | 成人精品天堂一区二区三区 | 精品国产成人一区二区三区 | 国产免费久久久久久无码 | 丁香啪啪综合成人亚洲 | 成人欧美一区二区三区 | 国产精品欧美成人 | 久久99久久99精品中文字幕 | 一二三四在线观看免费视频 | 国产色xx群视频射精 | 日韩成人一区二区三区在线观看 | 日本成熟视频免费视频 | 狠狠综合久久久久综合网 | 在线看片无码永久免费视频 | 日本精品久久久久中文字幕 | 又大又硬又黄的免费视频 | 男人的天堂2018无码 | 欧美人与禽zoz0性伦交 | 欧美日韩综合一区二区三区 | 日本爽爽爽爽爽爽在线观看免 | 精品无码一区二区三区爱欲 | 久久99精品久久久久久 | 天天爽夜夜爽夜夜爽 | 免费无码的av片在线观看 | 大屁股大乳丰满人妻 | 又紧又大又爽精品一区二区 | 亚洲人成网站在线播放942 | 熟妇人妻无乱码中文字幕 | 综合人妻久久一区二区精品 | 国产三级久久久精品麻豆三级 | av无码久久久久不卡免费网站 | 日日躁夜夜躁狠狠躁 | 兔费看少妇性l交大片免费 | 国内丰满熟女出轨videos | 久久久久99精品成人片 | 欧美大屁股xxxxhd黑色 | 亚洲中文字幕无码一久久区 | 色一情一乱一伦 | 无码成人精品区在线观看 | 野外少妇愉情中文字幕 | 国产乱码精品一品二品 | 成人精品一区二区三区中文字幕 | 性做久久久久久久久 | 娇妻被黑人粗大高潮白浆 | 国内丰满熟女出轨videos | 国产精品成人av在线观看 | 国产精品99爱免费视频 | 丝袜足控一区二区三区 | 久久久久成人片免费观看蜜芽 | 纯爱无遮挡h肉动漫在线播放 | 亚洲成色在线综合网站 | 无码人妻丰满熟妇区五十路百度 | 国产色精品久久人妻 | 精品人人妻人人澡人人爽人人 | 性生交大片免费看女人按摩摩 | 成人无码精品一区二区三区 | 国产精品爱久久久久久久 | 国产情侣作爱视频免费观看 | 色综合久久久无码中文字幕 | 中文字幕乱码人妻二区三区 | 久久国产劲爆∧v内射 | 中文字幕无码日韩欧毛 | 日本饥渴人妻欲求不满 | 精品久久8x国产免费观看 | 亚洲男女内射在线播放 | 骚片av蜜桃精品一区 | 亚洲综合无码久久精品综合 | 青春草在线视频免费观看 | 无码一区二区三区在线 | 99精品国产综合久久久久五月天 | 亚洲大尺度无码无码专区 | 夜夜高潮次次欢爽av女 | 帮老师解开蕾丝奶罩吸乳网站 | 中文字幕人妻无码一区二区三区 | 人人妻人人澡人人爽人人精品浪潮 | 国产亚洲精品久久久久久 | 女人色极品影院 | 久久国语露脸国产精品电影 | 2020久久香蕉国产线看观看 | 黑人巨大精品欧美一区二区 | 国产精品手机免费 | 暴力强奷在线播放无码 | 亚洲精品国产精品乱码视色 | 亚洲欧美精品aaaaaa片 | 国产精品.xx视频.xxtv | 野外少妇愉情中文字幕 | 暴力强奷在线播放无码 | 99麻豆久久久国产精品免费 | 麻花豆传媒剧国产免费mv在线 | 色综合久久网 | 欧美人与动性行为视频 | 十八禁视频网站在线观看 | 亚洲毛片av日韩av无码 | 思思久久99热只有频精品66 | 中文无码成人免费视频在线观看 | 在线亚洲高清揄拍自拍一品区 | 欧美三级不卡在线观看 | 性史性农村dvd毛片 | 亚洲精品国偷拍自产在线观看蜜桃 | 国产综合在线观看 | 无码帝国www无码专区色综合 | 最近的中文字幕在线看视频 | 精品 日韩 国产 欧美 视频 | 精品久久久久久人妻无码中文字幕 | 人人超人人超碰超国产 | 久久久无码中文字幕久... | 人人妻人人澡人人爽欧美一区 | 欧美日韩久久久精品a片 | 性色av无码免费一区二区三区 | 男女性色大片免费网站 | 清纯唯美经典一区二区 | 欧美日韩亚洲国产精品 | 日本xxxx色视频在线观看免费 | 国产精品手机免费 | 欧美日韩一区二区综合 | 国产成人综合在线女婷五月99播放 | 欧美高清在线精品一区 | 欧美国产日韩久久mv | av人摸人人人澡人人超碰下载 | 中文字幕无码免费久久9一区9 | 亚洲一区二区三区含羞草 | 少妇人妻偷人精品无码视频 | 国产精品视频免费播放 | 国内精品一区二区三区不卡 | 人人妻人人澡人人爽人人精品浪潮 | 在线观看国产午夜福利片 | 午夜熟女插插xx免费视频 | а√天堂www在线天堂小说 | 国产亚洲欧美日韩亚洲中文色 | 中文字幕av日韩精品一区二区 | 国产精品18久久久久久麻辣 | 色综合久久久久综合一本到桃花网 | 在线观看欧美一区二区三区 | 草草网站影院白丝内射 | 久久亚洲日韩精品一区二区三区 | 激情五月综合色婷婷一区二区 | 中文字幕精品av一区二区五区 | 亚洲国产精品久久久天堂 | 久久视频在线观看精品 | 久久久久久久人妻无码中文字幕爆 | 欧美丰满少妇xxxx性 | 人妻无码αv中文字幕久久琪琪布 | 中国大陆精品视频xxxx | 99视频精品全部免费免费观看 | 亚洲精品鲁一鲁一区二区三区 | 日韩亚洲欧美中文高清在线 | 人人妻人人藻人人爽欧美一区 | 亚洲日韩av一区二区三区中文 | 中文字幕+乱码+中文字幕一区 | 一本精品99久久精品77 | 日本www一道久久久免费榴莲 | 欧洲精品码一区二区三区免费看 | 国产亚洲精品久久久久久久 | 亚洲成色www久久网站 | 久久无码人妻影院 | 欧美老妇交乱视频在线观看 | 欧洲熟妇精品视频 | 亚洲熟妇色xxxxx亚洲 | 亚洲成a人片在线观看日本 | 亚洲国产午夜精品理论片 | √8天堂资源地址中文在线 | 午夜丰满少妇性开放视频 | 欧美国产日韩亚洲中文 | 67194成是人免费无码 | 鲁一鲁av2019在线 | 鲁一鲁av2019在线 | av小次郎收藏 | 欧美激情内射喷水高潮 | 国产亚洲美女精品久久久2020 | 国内精品久久毛片一区二区 | 久久久精品456亚洲影院 | 中文字幕人妻无码一区二区三区 | 日日摸天天摸爽爽狠狠97 | 日韩欧美群交p片內射中文 | 鲁鲁鲁爽爽爽在线视频观看 | 无遮挡啪啪摇乳动态图 | www国产亚洲精品久久久日本 | 少妇性荡欲午夜性开放视频剧场 | 国产午夜精品一区二区三区嫩草 | 亚洲中文字幕av在天堂 | 午夜精品一区二区三区的区别 | 人人爽人人澡人人人妻 | 精品欧美一区二区三区久久久 | 国产精品第一国产精品 | 亚洲精品国产精品乱码不卡 | 国産精品久久久久久久 | 国产精品久久久一区二区三区 | 性色av无码免费一区二区三区 | 国产精品美女久久久久av爽李琼 | 亚洲成色在线综合网站 | 国产精品久久久一区二区三区 | 欧美 丝袜 自拍 制服 另类 | 国产香蕉97碰碰久久人人 | 精品少妇爆乳无码av无码专区 | 亚洲中文无码av永久不收费 | 亚洲精品一区二区三区在线观看 | 国产综合色产在线精品 | 国产在线aaa片一区二区99 | 99精品国产综合久久久久五月天 | 亚洲欧美中文字幕5发布 | 黑人巨大精品欧美一区二区 | 大地资源网第二页免费观看 | 日韩 欧美 动漫 国产 制服 | 东京一本一道一二三区 | 丰满少妇人妻久久久久久 | 精品乱子伦一区二区三区 | 一本色道久久综合狠狠躁 | 波多野结衣高清一区二区三区 | 中文精品无码中文字幕无码专区 | 十八禁视频网站在线观看 | 97精品国产97久久久久久免费 | 帮老师解开蕾丝奶罩吸乳网站 | 综合人妻久久一区二区精品 | 蜜桃视频韩日免费播放 | 精品日本一区二区三区在线观看 | 伊人久久大香线蕉亚洲 | 国产精品久久久久久无码 | 亚洲第一无码av无码专区 | 超碰97人人射妻 | 成人一在线视频日韩国产 | 性做久久久久久久免费看 | 国产精品永久免费视频 | 久久精品无码一区二区三区 | 日本免费一区二区三区最新 | 国产香蕉97碰碰久久人人 | 亚洲精品国偷拍自产在线麻豆 | 特黄特色大片免费播放器图片 | 日本熟妇人妻xxxxx人hd | 伊人久久大香线蕉亚洲 | 伊人久久大香线焦av综合影院 | 亚洲爆乳无码专区 | 色婷婷欧美在线播放内射 | 野外少妇愉情中文字幕 | 欧美freesex黑人又粗又大 | 午夜精品一区二区三区的区别 | 精品乱码久久久久久久 | 免费无码av一区二区 | 日韩亚洲欧美中文高清在线 | 黄网在线观看免费网站 | 中文字幕无码av激情不卡 | 精品久久久久久人妻无码中文字幕 | 水蜜桃色314在线观看 | 国产成人精品久久亚洲高清不卡 | 高潮毛片无遮挡高清免费视频 | 夜先锋av资源网站 | 麻豆果冻传媒2021精品传媒一区下载 | 国产精品亚洲综合色区韩国 | 亚洲国产精品无码久久久久高潮 | 啦啦啦www在线观看免费视频 | 成人欧美一区二区三区 | 精品成人av一区二区三区 | av无码不卡在线观看免费 | 东京热无码av男人的天堂 | 欧美日韩色另类综合 | 亚洲欧美日韩国产精品一区二区 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 最新版天堂资源中文官网 | 波多野42部无码喷潮在线 | 久久 国产 尿 小便 嘘嘘 | 国产乱人伦偷精品视频 | 亚洲小说春色综合另类 | 成 人 免费观看网站 | 久久99精品国产麻豆蜜芽 | 18禁黄网站男男禁片免费观看 | 自拍偷自拍亚洲精品被多人伦好爽 | 人人妻人人澡人人爽欧美精品 | 无码国模国产在线观看 | 亚洲狠狠色丁香婷婷综合 | 人妻少妇精品无码专区二区 | 天天燥日日燥 | 亚洲精品成人福利网站 | 婷婷丁香五月天综合东京热 | 老熟女乱子伦 | 色一情一乱一伦一区二区三欧美 | 国产内射爽爽大片视频社区在线 | 女人被男人爽到呻吟的视频 | 日日噜噜噜噜夜夜爽亚洲精品 | 亚洲精品无码国产 | 亚洲日韩av片在线观看 | 国产超碰人人爽人人做人人添 | 丝袜足控一区二区三区 | 欧美成人家庭影院 | 少妇无码av无码专区在线观看 | 九月婷婷人人澡人人添人人爽 | 国内精品久久久久久中文字幕 | 成人无码精品一区二区三区 | 国产猛烈高潮尖叫视频免费 | 扒开双腿吃奶呻吟做受视频 | 亚欧洲精品在线视频免费观看 | 久久99精品国产麻豆蜜芽 | 两性色午夜视频免费播放 | 台湾无码一区二区 | 亚洲日韩一区二区三区 | 无套内谢的新婚少妇国语播放 | 夜夜影院未满十八勿进 | 亚洲人交乣女bbw | 无码毛片视频一区二区本码 | 久久久久99精品国产片 | 鲁鲁鲁爽爽爽在线视频观看 | 国内精品一区二区三区不卡 | 特黄特色大片免费播放器图片 | 欧美放荡的少妇 | 亚洲自偷精品视频自拍 | 99久久精品日本一区二区免费 | 国产 精品 自在自线 | 国产麻豆精品精东影业av网站 | 久久五月精品中文字幕 | 日本爽爽爽爽爽爽在线观看免 | 5858s亚洲色大成网站www | 鲁鲁鲁爽爽爽在线视频观看 | 在线亚洲高清揄拍自拍一品区 | 蜜桃视频韩日免费播放 | 久久精品一区二区三区四区 | 超碰97人人做人人爱少妇 | av在线亚洲欧洲日产一区二区 | 亚洲一区二区三区国产精华液 | 性做久久久久久久久 | 国产亚洲精品精品国产亚洲综合 | 麻豆国产97在线 | 欧洲 | 日韩精品成人一区二区三区 | 老子影院午夜伦不卡 | 亚洲欧美日韩国产精品一区二区 | 婷婷色婷婷开心五月四房播播 | 三上悠亚人妻中文字幕在线 | 中文字幕 人妻熟女 | 日本一区二区更新不卡 | 国产午夜福利100集发布 | 强奷人妻日本中文字幕 | 亚洲午夜久久久影院 | 一本久久a久久精品vr综合 | 99riav国产精品视频 | 三级4级全黄60分钟 | 婷婷五月综合缴情在线视频 | 久久精品国产99精品亚洲 | 精品一区二区不卡无码av | 国产精品二区一区二区aⅴ污介绍 | 国产精品99爱免费视频 | 成人女人看片免费视频放人 | 最近的中文字幕在线看视频 | 精品国产青草久久久久福利 | 玩弄中年熟妇正在播放 | 一本久久a久久精品vr综合 | 日韩欧美成人免费观看 | 国产麻豆精品精东影业av网站 | 乱码av麻豆丝袜熟女系列 | 久久久www成人免费毛片 | 久久天天躁狠狠躁夜夜免费观看 | 久久久成人毛片无码 | 久久97精品久久久久久久不卡 | 欧美成人免费全部网站 | 国产真实伦对白全集 | 色综合视频一区二区三区 | 玩弄少妇高潮ⅹxxxyw | 日韩成人一区二区三区在线观看 | 国产 浪潮av性色四虎 | 久久午夜夜伦鲁鲁片无码免费 | 露脸叫床粗话东北少妇 | 亚洲 激情 小说 另类 欧美 | 六月丁香婷婷色狠狠久久 | 日本一区二区更新不卡 | 国产两女互慰高潮视频在线观看 | 亚洲成av人片天堂网无码】 | 在线观看欧美一区二区三区 | 免费中文字幕日韩欧美 | 亚洲最大成人网站 | ass日本丰满熟妇pics | 精品久久8x国产免费观看 | 日本乱偷人妻中文字幕 | 色综合久久88色综合天天 | 无套内射视频囯产 | 中文字幕人妻无码一区二区三区 | 久久熟妇人妻午夜寂寞影院 | 东京热男人av天堂 | 欧美 日韩 亚洲 在线 | a片免费视频在线观看 | 国产精品永久免费视频 | 乌克兰少妇xxxx做受 | 国产真人无遮挡作爱免费视频 | 国产97色在线 | 免 | 国产乱码精品一品二品 | 亚洲色在线无码国产精品不卡 | 亚洲无人区一区二区三区 | 漂亮人妻洗澡被公强 日日躁 | 日韩精品a片一区二区三区妖精 | 国产亚洲人成在线播放 | aⅴ在线视频男人的天堂 | 久久精品人妻少妇一区二区三区 | 国产莉萝无码av在线播放 | 97夜夜澡人人爽人人喊中国片 | 国产高清av在线播放 | 色婷婷综合激情综在线播放 | 色爱情人网站 | 亚洲国产午夜精品理论片 | 欧美日韩一区二区综合 | 国产熟妇高潮叫床视频播放 | 男女超爽视频免费播放 | av在线亚洲欧洲日产一区二区 | 无码国内精品人妻少妇 | 欧美熟妇另类久久久久久多毛 | 国产偷抇久久精品a片69 | 亚洲欧美日韩综合久久久 | 国产在线精品一区二区三区直播 | 无码纯肉视频在线观看 | 撕开奶罩揉吮奶头视频 | 国内老熟妇对白xxxxhd | 国产无遮挡吃胸膜奶免费看 | 国产在线无码精品电影网 | 亚洲综合色区中文字幕 | 国产精品va在线播放 | 扒开双腿吃奶呻吟做受视频 | 国产无遮挡吃胸膜奶免费看 | 麻豆国产丝袜白领秘书在线观看 | 日本va欧美va欧美va精品 | 永久免费观看美女裸体的网站 | 精品久久久久久亚洲精品 | 一区二区传媒有限公司 | 中文字幕无码视频专区 | 国产精品99爱免费视频 | 人人妻在人人 | 帮老师解开蕾丝奶罩吸乳网站 | 一区二区三区高清视频一 | 日韩人妻系列无码专区 | 97久久国产亚洲精品超碰热 | 国产精品高潮呻吟av久久 | 国产av一区二区精品久久凹凸 | 最新版天堂资源中文官网 | 国产成人综合色在线观看网站 | 在线观看欧美一区二区三区 | a片在线免费观看 | 精品人人妻人人澡人人爽人人 | 国产精品久久久久久久9999 | 野狼第一精品社区 | 蜜臀av在线播放 久久综合激激的五月天 | 亚洲乱码日产精品bd | аⅴ资源天堂资源库在线 | 老太婆性杂交欧美肥老太 | 成熟人妻av无码专区 | 久久99久久99精品中文字幕 | 国产激情综合五月久久 | 亚洲熟妇色xxxxx欧美老妇y | 国产亚洲精品久久久久久久 | www国产亚洲精品久久久日本 | 成人欧美一区二区三区黑人免费 | 国产亚洲精品久久久闺蜜 | 国产精品自产拍在线观看 | 最近免费中文字幕中文高清百度 | 欧美一区二区三区视频在线观看 | 色综合久久88色综合天天 | 亚洲精品中文字幕乱码 | 欧美人妻一区二区三区 | 97人妻精品一区二区三区 | 欧美 日韩 人妻 高清 中文 | 国产午夜精品一区二区三区嫩草 | 精品国产成人一区二区三区 | 性史性农村dvd毛片 | 国产无遮挡又黄又爽免费视频 | 男人扒开女人内裤强吻桶进去 | 乱码午夜-极国产极内射 | 久久午夜无码鲁丝片 | 一本久道高清无码视频 | 人人澡人摸人人添 | 国产麻豆精品精东影业av网站 | 精品水蜜桃久久久久久久 | 亚洲国产成人a精品不卡在线 | 妺妺窝人体色www婷婷 | 又紧又大又爽精品一区二区 | 国产农村乱对白刺激视频 | 丝袜 中出 制服 人妻 美腿 | 一本无码人妻在中文字幕免费 | 欧美xxxx黑人又粗又长 | 色综合久久久久综合一本到桃花网 | 日韩精品乱码av一区二区 | 色爱情人网站 | 日本一卡2卡3卡四卡精品网站 | 国产美女精品一区二区三区 | 欧美真人作爱免费视频 | 国内综合精品午夜久久资源 | a国产一区二区免费入口 | 国产精品久久久久久亚洲影视内衣 | 中文字幕人成乱码熟女app | 无码福利日韩神码福利片 | 亚洲国产精品无码一区二区三区 | 精品久久综合1区2区3区激情 | 纯爱无遮挡h肉动漫在线播放 | 亚洲国产精品久久久天堂 | 久久成人a毛片免费观看网站 | 亚洲精品久久久久久久久久久 | 全黄性性激高免费视频 | 亚洲精品综合五月久久小说 | 国产办公室秘书无码精品99 | 亚洲午夜久久久影院 | 香港三级日本三级妇三级 | 永久免费观看美女裸体的网站 | 一二三四社区在线中文视频 | 中文字幕人成乱码熟女app | 麻豆精品国产精华精华液好用吗 | 欧美 丝袜 自拍 制服 另类 | 无码人妻丰满熟妇区五十路百度 | 99久久亚洲精品无码毛片 | 色一情一乱一伦一视频免费看 | 动漫av网站免费观看 | 久久精品丝袜高跟鞋 | 成人免费无码大片a毛片 | 天干天干啦夜天干天2017 | 国产成人综合在线女婷五月99播放 | 久久久久久av无码免费看大片 | 老司机亚洲精品影院无码 | 67194成是人免费无码 | 国产激情综合五月久久 | 中文字幕乱码人妻无码久久 | 亚洲欧美精品aaaaaa片 | 国产亚洲欧美日韩亚洲中文色 | 国产另类ts人妖一区二区 | 亚洲色欲色欲欲www在线 | 四虎影视成人永久免费观看视频 | 啦啦啦www在线观看免费视频 | 中文毛片无遮挡高清免费 | 亚洲 激情 小说 另类 欧美 | 久久久久久久久888 | 色综合天天综合狠狠爱 | 俺去俺来也在线www色官网 | 欧美阿v高清资源不卡在线播放 | 少妇高潮一区二区三区99 | 少妇人妻av毛片在线看 | 欧美精品无码一区二区三区 | 色婷婷欧美在线播放内射 | 久久国产精品精品国产色婷婷 | 亚洲国产精品久久久天堂 | 成人精品天堂一区二区三区 | 在线天堂新版最新版在线8 | 一本精品99久久精品77 | 亚洲国产综合无码一区 | 亚洲gv猛男gv无码男同 | 久久久久久久女国产乱让韩 | 国产精品高潮呻吟av久久 | 国产成人无码区免费内射一片色欲 | 在线亚洲高清揄拍自拍一品区 | 少妇性l交大片欧洲热妇乱xxx | √8天堂资源地址中文在线 | 色五月丁香五月综合五月 | 欧美第一黄网免费网站 | 2020最新国产自产精品 | 久久精品国产日本波多野结衣 | 国产精品久久久久久亚洲毛片 | 久在线观看福利视频 | 国产高清不卡无码视频 | 六月丁香婷婷色狠狠久久 | 日本www一道久久久免费榴莲 | 欧美丰满老熟妇xxxxx性 | 撕开奶罩揉吮奶头视频 | 亚洲成a人一区二区三区 | 国内精品人妻无码久久久影院蜜桃 | 久久久精品人妻久久影视 | 精品aⅴ一区二区三区 | 中文无码伦av中文字幕 | 精品无码av一区二区三区 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 九九综合va免费看 | 中文精品无码中文字幕无码专区 | 亚洲综合久久一区二区 | 国产人妻大战黑人第1集 | 久久久久久九九精品久 | 日本高清一区免费中文视频 | 色婷婷综合激情综在线播放 | 精品国产一区av天美传媒 | 精品国产一区二区三区av 性色 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 欧美性生交xxxxx久久久 | 蜜桃av蜜臀av色欲av麻 999久久久国产精品消防器材 | 粉嫩少妇内射浓精videos | 久久亚洲a片com人成 | 久久亚洲中文字幕无码 | 亚洲乱码中文字幕在线 | 曰韩少妇内射免费播放 | 国产激情一区二区三区 | 夜夜躁日日躁狠狠久久av | 亚洲日韩av一区二区三区四区 | 色 综合 欧美 亚洲 国产 | 国产电影无码午夜在线播放 | 国内少妇偷人精品视频 | 亚洲一区av无码专区在线观看 | 骚片av蜜桃精品一区 | 午夜无码人妻av大片色欲 | 亚洲一区二区三区无码久久 | 300部国产真实乱 | 人人妻人人澡人人爽人人精品浪潮 | 日日橹狠狠爱欧美视频 | 人人妻人人澡人人爽欧美一区 | 99久久精品日本一区二区免费 | 日本一区二区三区免费播放 | 精品无码av一区二区三区 | 亚洲国产精品成人久久蜜臀 | 精品国产aⅴ无码一区二区 | 国产欧美熟妇另类久久久 | 女人被男人爽到呻吟的视频 | 国产精品人人爽人人做我的可爱 | 丰满妇女强制高潮18xxxx | 国内精品久久久久久中文字幕 | 麻豆国产97在线 | 欧洲 | 精品成在人线av无码免费看 | 亚洲伊人久久精品影院 | 色老头在线一区二区三区 | 亚洲精品国产精品乱码视色 | 亚洲精品一区三区三区在线观看 | 在线天堂新版最新版在线8 | 两性色午夜免费视频 | 人妻少妇精品无码专区动漫 | 色诱久久久久综合网ywww | 成人免费视频视频在线观看 免费 | 精品久久久久香蕉网 | 精品人妻人人做人人爽夜夜爽 | 麻豆人妻少妇精品无码专区 | 久久久久99精品国产片 | 国产口爆吞精在线视频 | 国产av无码专区亚洲a∨毛片 | 最近的中文字幕在线看视频 | 中文字幕无码日韩欧毛 | 少妇高潮喷潮久久久影院 | 国产精品无码永久免费888 | 狠狠色丁香久久婷婷综合五月 | 欧美猛少妇色xxxxx | 亚洲一区二区三区无码久久 | 99久久精品午夜一区二区 | 水蜜桃色314在线观看 | 激情五月综合色婷婷一区二区 | 亚洲午夜福利在线观看 | 国产无遮挡又黄又爽免费视频 | 国产xxx69麻豆国语对白 | 国产综合在线观看 | 夜先锋av资源网站 | 无码人妻精品一区二区三区不卡 | 国产特级毛片aaaaaa高潮流水 | 精品一区二区不卡无码av | 水蜜桃色314在线观看 | 最新版天堂资源中文官网 | 免费网站看v片在线18禁无码 | 又黄又爽又色的视频 | 国产午夜福利100集发布 | 国产激情一区二区三区 | 亚洲成av人综合在线观看 | 成人精品天堂一区二区三区 | 日本一区二区三区免费高清 | 人人妻在人人 | 乱码午夜-极国产极内射 | 午夜理论片yy44880影院 | 久久国产自偷自偷免费一区调 | 日本va欧美va欧美va精品 | 天天做天天爱天天爽综合网 | 亚洲色欲色欲欲www在线 | 欧美一区二区三区视频在线观看 | 久久久久久av无码免费看大片 | v一区无码内射国产 | 国产成人精品无码播放 | 国产极品视觉盛宴 | 亚洲国产高清在线观看视频 | 天堂亚洲免费视频 | 久久久久久久人妻无码中文字幕爆 | 亚洲午夜无码久久 | 国产精品无码一区二区桃花视频 | 久久久久久久久蜜桃 | 乌克兰少妇xxxx做受 | 九月婷婷人人澡人人添人人爽 | 中文字幕乱码人妻无码久久 | 日韩精品无码一区二区中文字幕 | 久久人妻内射无码一区三区 | 波多野结衣 黑人 | 爽爽影院免费观看 | 18无码粉嫩小泬无套在线观看 | 亚洲色欲色欲天天天www | 人人妻人人澡人人爽欧美精品 | 色五月丁香五月综合五月 | 亚洲a无码综合a国产av中文 | 中文字幕无码免费久久99 | 亚洲色欲色欲天天天www | 夜夜夜高潮夜夜爽夜夜爰爰 | 亚洲国产成人a精品不卡在线 | 西西人体www44rt大胆高清 | 国产精品高潮呻吟av久久 | 日本护士xxxxhd少妇 | 国产高清不卡无码视频 | 青青青手机频在线观看 | 丰满少妇弄高潮了www | 亚洲一区二区观看播放 | 99精品无人区乱码1区2区3区 | 精品久久综合1区2区3区激情 | 日产国产精品亚洲系列 | 国产午夜福利亚洲第一 | 97夜夜澡人人爽人人喊中国片 | 久久99精品久久久久婷婷 | 日产国产精品亚洲系列 | 丰满人妻翻云覆雨呻吟视频 | 无码纯肉视频在线观看 | 一本色道婷婷久久欧美 | 少妇邻居内射在线 | 性色欲网站人妻丰满中文久久不卡 | 亚洲の无码国产の无码步美 | 亚洲精品一区三区三区在线观看 | 成人精品视频一区二区 | 少妇被黑人到高潮喷出白浆 | 亚洲精品一区二区三区四区五区 | 欧美丰满熟妇xxxx性ppx人交 | 一本色道久久综合狠狠躁 | 亚洲第一无码av无码专区 | 国产精品怡红院永久免费 | 乱人伦中文视频在线观看 | 久久久久久av无码免费看大片 | 女人被男人躁得好爽免费视频 | 荫蒂添的好舒服视频囗交 | 欧美日本精品一区二区三区 | 国产精品多人p群无码 | 在线播放亚洲第一字幕 | 午夜丰满少妇性开放视频 | 国产成人精品必看 | 亚洲色在线无码国产精品不卡 | 久久久久av无码免费网 | 亚洲人成网站色7799 | 久久综合九色综合97网 | 无码午夜成人1000部免费视频 | 国产精品鲁鲁鲁 | 成年美女黄网站色大免费视频 | 俺去俺来也www色官网 | 亚洲日本va午夜在线电影 | 天干天干啦夜天干天2017 | 亚洲色www成人永久网址 | 国产亚洲精品久久久ai换 | 亚洲日韩一区二区三区 | 日本精品久久久久中文字幕 | 黑人巨大精品欧美一区二区 | 黑人巨大精品欧美黑寡妇 | 中文字幕人成乱码熟女app | 天下第一社区视频www日本 | 奇米影视7777久久精品人人爽 | 成熟妇人a片免费看网站 | 无码人妻精品一区二区三区下载 | 久久久无码中文字幕久... | 欧美日本精品一区二区三区 | 97精品国产97久久久久久免费 | 午夜精品一区二区三区的区别 | 黑人巨大精品欧美黑寡妇 | 国产真人无遮挡作爱免费视频 | 又紧又大又爽精品一区二区 | 88国产精品欧美一区二区三区 | 一本久道久久综合狠狠爱 | 国产精品.xx视频.xxtv | 黑人巨大精品欧美黑寡妇 | 婷婷丁香六月激情综合啪 | 精品人妻中文字幕有码在线 | 中文字幕无码人妻少妇免费 | 成人免费无码大片a毛片 | aⅴ亚洲 日韩 色 图网站 播放 | 亚洲日韩av片在线观看 | 一区二区三区高清视频一 | 国产sm调教视频在线观看 | 精品人妻av区 | 波多野结衣乳巨码无在线观看 | 无码国产激情在线观看 | 九九久久精品国产免费看小说 | 蜜臀av无码人妻精品 | 国产高潮视频在线观看 | 久久aⅴ免费观看 | 国产精品免费大片 | 无码一区二区三区在线观看 | 国产av一区二区精品久久凹凸 | 十八禁真人啪啪免费网站 | 久久99精品久久久久久 | 性欧美大战久久久久久久 | 国産精品久久久久久久 | 国产成人精品必看 | 成人女人看片免费视频放人 | 88国产精品欧美一区二区三区 | 国产凸凹视频一区二区 | 特级做a爰片毛片免费69 | 国产精品资源一区二区 | 亚洲日韩乱码中文无码蜜桃臀网站 | 欧美日韩久久久精品a片 | 国产性生交xxxxx无码 | 99er热精品视频 | 亚洲区欧美区综合区自拍区 | 国产精品久久久一区二区三区 | 久久久www成人免费毛片 | 亚洲精品国偷拍自产在线麻豆 | 暴力强奷在线播放无码 | 欧美日韩在线亚洲综合国产人 | 无遮挡国产高潮视频免费观看 | 欧美亚洲日韩国产人成在线播放 | 国产成人一区二区三区在线观看 | 性生交大片免费看女人按摩摩 | 国产精品人妻一区二区三区四 | 国产激情精品一区二区三区 | 亚洲国产高清在线观看视频 | 精品少妇爆乳无码av无码专区 | 东京无码熟妇人妻av在线网址 | 国产婷婷色一区二区三区在线 | 性色欲网站人妻丰满中文久久不卡 | 亚洲色欲色欲欲www在线 | 国产精品国产自线拍免费软件 | 国产精品无码mv在线观看 | 无码人妻精品一区二区三区不卡 | 日日摸夜夜摸狠狠摸婷婷 | 大屁股大乳丰满人妻 | 激情爆乳一区二区三区 | 色综合久久久久综合一本到桃花网 | 精品人妻人人做人人爽 | 天堂久久天堂av色综合 | 纯爱无遮挡h肉动漫在线播放 | 精品厕所偷拍各类美女tp嘘嘘 | 少妇高潮一区二区三区99 | 东北女人啪啪对白 | 久久综合色之久久综合 | 对白脏话肉麻粗话av | 亚洲一区二区三区播放 | 亚洲综合无码一区二区三区 | 永久免费观看美女裸体的网站 | 水蜜桃av无码 | 天堂无码人妻精品一区二区三区 | 性做久久久久久久免费看 | 久久久国产精品无码免费专区 | 激情爆乳一区二区三区 | 蜜臀aⅴ国产精品久久久国产老师 | 亚洲精品美女久久久久久久 | 久久综合久久自在自线精品自 | 成在人线av无码免观看麻豆 | 欧美日韩人成综合在线播放 | 麻豆果冻传媒2021精品传媒一区下载 | 久久五月精品中文字幕 | 国产成人精品无码播放 | 波多野结衣一区二区三区av免费 | 强辱丰满人妻hd中文字幕 | 成人av无码一区二区三区 | 清纯唯美经典一区二区 | 男人扒开女人内裤强吻桶进去 | 久久精品国产99精品亚洲 | 国产真实夫妇视频 | 欧美日韩人成综合在线播放 | 性史性农村dvd毛片 | 久久久精品人妻久久影视 | 色偷偷人人澡人人爽人人模 | 国产猛烈高潮尖叫视频免费 | 内射爽无广熟女亚洲 | 亚洲第一网站男人都懂 | 人人妻人人澡人人爽人人精品 | 亚洲综合伊人久久大杳蕉 | 国产无遮挡吃胸膜奶免费看 | 日韩精品成人一区二区三区 | 人人妻人人澡人人爽人人精品浪潮 | 又大又黄又粗又爽的免费视频 | 亚洲成av人片天堂网无码】 | 初尝人妻少妇中文字幕 | 丁香啪啪综合成人亚洲 | 精品无码成人片一区二区98 | а√天堂www在线天堂小说 | 又紧又大又爽精品一区二区 | 2019nv天堂香蕉在线观看 | 亚洲va中文字幕无码久久不卡 | 欧美怡红院免费全部视频 | 欧美激情综合亚洲一二区 | 亚洲国产av美女网站 | v一区无码内射国产 | 日韩人妻系列无码专区 | 精品国偷自产在线 | 丰满岳乱妇在线观看中字无码 | 午夜男女很黄的视频 | 我要看www免费看插插视频 | 99精品无人区乱码1区2区3区 | 亚洲乱码国产乱码精品精 | 玩弄中年熟妇正在播放 | 天堂а√在线地址中文在线 | 老熟妇仑乱视频一区二区 | 日本在线高清不卡免费播放 | 婷婷六月久久综合丁香 | 国产成人无码av在线影院 | 搡女人真爽免费视频大全 | 中文字幕乱码人妻无码久久 | 装睡被陌生人摸出水好爽 | 98国产精品综合一区二区三区 | 亚洲国产午夜精品理论片 | 国产一区二区三区四区五区加勒比 | 中文无码成人免费视频在线观看 | 国产内射老熟女aaaa | 人人澡人人透人人爽 | 成 人 网 站国产免费观看 | 国产真实伦对白全集 | 日韩精品久久久肉伦网站 | 免费人成网站视频在线观看 | 国产美女极度色诱视频www | 欧美国产日韩久久mv | 国内精品人妻无码久久久影院蜜桃 | 少妇无套内谢久久久久 | 青青草原综合久久大伊人精品 | 中文字幕乱码人妻无码久久 | 亚洲成色在线综合网站 | 人妻天天爽夜夜爽一区二区 | 青草青草久热国产精品 | 亚洲精品中文字幕 | 精品久久8x国产免费观看 | 中文字幕无码人妻少妇免费 | 妺妺窝人体色www婷婷 | 国产精品人妻一区二区三区四 | 97se亚洲精品一区 | 国产午夜亚洲精品不卡 | av在线亚洲欧洲日产一区二区 | 麻豆人妻少妇精品无码专区 | 又湿又紧又大又爽a视频国产 | 国产亚洲美女精品久久久2020 | 疯狂三人交性欧美 | 一个人看的www免费视频在线观看 | 日本熟妇浓毛 | 久久久精品人妻久久影视 | 无套内谢老熟女 | 欧美日韩亚洲国产精品 | 国产人妖乱国产精品人妖 | 男人的天堂av网站 | 国产精品va在线观看无码 | 人妻夜夜爽天天爽三区 | 精品无码一区二区三区的天堂 | 中文字幕无码av激情不卡 | 国产精品免费大片 | 久久亚洲a片com人成 | 日本一本二本三区免费 | 亚洲乱亚洲乱妇50p | 人妻少妇精品无码专区二区 | 欧美成人免费全部网站 | 中文字幕av无码一区二区三区电影 | 欧美精品无码一区二区三区 | 六月丁香婷婷色狠狠久久 | 男人的天堂av网站 | 熟妇激情内射com | 国产精品18久久久久久麻辣 | 伊人久久大香线蕉av一区二区 | 亚洲第一网站男人都懂 | 老司机亚洲精品影院 | 无码av最新清无码专区吞精 | aⅴ亚洲 日韩 色 图网站 播放 | 大地资源网第二页免费观看 | 国产精品亚洲综合色区韩国 | 中文字幕久久久久人妻 | 久久久久久国产精品无码下载 | 国产成人无码av片在线观看不卡 | 成人精品天堂一区二区三区 | 国产9 9在线 | 中文 | 99在线 | 亚洲 | 中文毛片无遮挡高清免费 | 人妻少妇精品无码专区动漫 | 成人免费视频一区二区 | 久久久久免费精品国产 | 九月婷婷人人澡人人添人人爽 | 丝袜 中出 制服 人妻 美腿 | 国产亚洲精品久久久闺蜜 | 久久国产精品萌白酱免费 | 一本色道久久综合亚洲精品不卡 | 欧美日韩久久久精品a片 | 蜜桃臀无码内射一区二区三区 | 丝袜美腿亚洲一区二区 | 欧美成人免费全部网站 | 捆绑白丝粉色jk震动捧喷白浆 | 一本加勒比波多野结衣 | 青青草原综合久久大伊人精品 | 午夜精品久久久久久久 | 人妻有码中文字幕在线 | 欧美乱妇无乱码大黄a片 | 中文精品久久久久人妻不卡 | 亚洲另类伦春色综合小说 | 成人精品视频一区二区三区尤物 | 成人aaa片一区国产精品 | 亚洲日本在线电影 | 午夜无码区在线观看 | 欧美zoozzooz性欧美 | 国产精品久久久久久久影院 | 国内综合精品午夜久久资源 | 国产人妻久久精品二区三区老狼 | 18禁黄网站男男禁片免费观看 | 亚洲熟妇色xxxxx欧美老妇 | 国产又爽又猛又粗的视频a片 | 夜精品a片一区二区三区无码白浆 | 久久天天躁狠狠躁夜夜免费观看 | 成人影院yy111111在线观看 | 久激情内射婷内射蜜桃人妖 | www一区二区www免费 | 无码av岛国片在线播放 | 亚洲国产综合无码一区 | 永久免费观看国产裸体美女 | 帮老师解开蕾丝奶罩吸乳网站 | 99国产欧美久久久精品 | 日本一区二区三区免费播放 | 中文字幕亚洲情99在线 | 超碰97人人做人人爱少妇 | 美女黄网站人色视频免费国产 | 中文字幕无码热在线视频 | 精品久久久中文字幕人妻 | 午夜免费福利小电影 | 无码国产乱人伦偷精品视频 | av无码久久久久不卡免费网站 | 久久亚洲日韩精品一区二区三区 | 少妇人妻大乳在线视频 | 久久国产精品萌白酱免费 | 东京无码熟妇人妻av在线网址 | 亚洲中文字幕无码中文字在线 | 国精产品一品二品国精品69xx | 东京热男人av天堂 | 亚洲成在人网站无码天堂 | 成人aaa片一区国产精品 | 成年美女黄网站色大免费视频 | 色婷婷久久一区二区三区麻豆 | 亚洲精品中文字幕 | 国产激情综合五月久久 | 狠狠色噜噜狠狠狠狠7777米奇 | 亚洲熟妇自偷自拍另类 | 暴力强奷在线播放无码 | 久久精品丝袜高跟鞋 | 中文字幕乱码人妻无码久久 | 国产一区二区三区四区五区加勒比 | 国产亚洲精品精品国产亚洲综合 | 成人亚洲精品久久久久软件 | 噜噜噜亚洲色成人网站 | 亚洲一区二区观看播放 | 精品久久久久久人妻无码中文字幕 | 精品人妻中文字幕有码在线 | 亚洲成av人影院在线观看 | 亚洲色欲久久久综合网东京热 | 久久人妻内射无码一区三区 | 国产高清不卡无码视频 | 日韩在线不卡免费视频一区 | 日本护士xxxxhd少妇 | 久久久婷婷五月亚洲97号色 | 国产sm调教视频在线观看 | 色妞www精品免费视频 | 无码一区二区三区在线 | 日韩 欧美 动漫 国产 制服 | 荫蒂添的好舒服视频囗交 | 久久天天躁狠狠躁夜夜免费观看 | 97无码免费人妻超级碰碰夜夜 | 色 综合 欧美 亚洲 国产 | 色老头在线一区二区三区 | 青青青爽视频在线观看 | 午夜成人1000部免费视频 | 亚洲色大成网站www | 中文字幕人妻无码一区二区三区 | 黑人玩弄人妻中文在线 | 男人的天堂av网站 | 国产精品亚洲一区二区三区喷水 | 98国产精品综合一区二区三区 | 粉嫩少妇内射浓精videos | 国精产品一品二品国精品69xx | 日本精品人妻无码77777 天堂一区人妻无码 | 亚洲成av人片天堂网无码】 | 亚洲一区av无码专区在线观看 | 狠狠色噜噜狠狠狠狠7777米奇 | 强开小婷嫩苞又嫩又紧视频 | 少妇无码av无码专区在线观看 | 四虎国产精品一区二区 | 欧美人与动性行为视频 | 亚洲色欲色欲天天天www | 久久久久se色偷偷亚洲精品av | 午夜精品久久久久久久久 | www一区二区www免费 | 国产午夜亚洲精品不卡下载 | 国产美女极度色诱视频www | 国产成人精品久久亚洲高清不卡 | 性欧美熟妇videofreesex | 久久精品国产一区二区三区 | 国产97色在线 | 免 | 日韩少妇白浆无码系列 | 九月婷婷人人澡人人添人人爽 | 久久久久久久人妻无码中文字幕爆 | 亚洲一区二区三区 | 国产乱人偷精品人妻a片 | 色婷婷久久一区二区三区麻豆 | 人人澡人摸人人添 | 国产极品美女高潮无套在线观看 | 久久人妻内射无码一区三区 | 精品一区二区不卡无码av | 国产精品久久久午夜夜伦鲁鲁 | 国产av剧情md精品麻豆 | 亚洲精品中文字幕 | 午夜免费福利小电影 | 国产日产欧产精品精品app | 激情综合激情五月俺也去 | 爱做久久久久久 | 国产 精品 自在自线 | 粗大的内捧猛烈进出视频 | 色一情一乱一伦一区二区三欧美 | 欧美精品无码一区二区三区 | 国产欧美熟妇另类久久久 | 亚洲国产精品一区二区第一页 | 欧美性生交活xxxxxdddd | 大地资源中文第3页 | 国产无av码在线观看 | 日本大香伊一区二区三区 | 中文字幕乱码人妻二区三区 | 熟妇人妻无码xxx视频 | 亚洲欧美精品伊人久久 | 亚洲国产av精品一区二区蜜芽 | 综合人妻久久一区二区精品 | 波多野结衣 黑人 | 久久精品人人做人人综合 | 国产精品高潮呻吟av久久4虎 | 99视频精品全部免费免费观看 | 亚洲va中文字幕无码久久不卡 | 欧美熟妇另类久久久久久多毛 | 精品无码av一区二区三区 | 人妻人人添人妻人人爱 | 东北女人啪啪对白 | 日韩人妻无码中文字幕视频 | 亚洲色大成网站www | 亚洲成a人片在线观看无码 | 国产精华av午夜在线观看 | 天天躁夜夜躁狠狠是什么心态 | 97久久精品无码一区二区 | 综合网日日天干夜夜久久 | 成人性做爰aaa片免费看 | 精品偷自拍另类在线观看 | 亚洲高清偷拍一区二区三区 | 搡女人真爽免费视频大全 | 六月丁香婷婷色狠狠久久 | 日本一卡2卡3卡四卡精品网站 | 国产成人无码午夜视频在线观看 | 色综合久久久无码网中文 | 波多野结衣一区二区三区av免费 | 久久亚洲精品中文字幕无男同 | 中文字幕亚洲情99在线 | 荫蒂添的好舒服视频囗交 | 久久人人爽人人爽人人片ⅴ | 欧美35页视频在线观看 | 久久久久成人精品免费播放动漫 | 欧美国产日产一区二区 | 欧美日韩人成综合在线播放 | 中文字幕亚洲情99在线 | 亚洲中文字幕无码中文字在线 | 强开小婷嫩苞又嫩又紧视频 | 国内综合精品午夜久久资源 | 成 人 免费观看网站 | 国产成人久久精品流白浆 | 国产色精品久久人妻 | 国产精品久久久久久亚洲影视内衣 | 国产乡下妇女做爰 | 色一情一乱一伦 | 久久午夜夜伦鲁鲁片无码免费 | 精品久久久久久人妻无码中文字幕 | 精品人人妻人人澡人人爽人人 | 99久久婷婷国产综合精品青草免费 | av香港经典三级级 在线 | 亚洲精品中文字幕乱码 | 99视频精品全部免费免费观看 | 大乳丰满人妻中文字幕日本 | 人妻人人添人妻人人爱 | 亚洲精品午夜国产va久久成人 | 少妇太爽了在线观看 | 桃花色综合影院 | 熟女俱乐部五十路六十路av | 久久久成人毛片无码 | 4hu四虎永久在线观看 | 小sao货水好多真紧h无码视频 | 亚洲 a v无 码免 费 成 人 a v | 久久久成人毛片无码 | 强奷人妻日本中文字幕 | 午夜精品一区二区三区在线观看 | 国产精品亚洲lv粉色 | 亚洲成熟女人毛毛耸耸多 | 中国女人内谢69xxxxxa片 | 俄罗斯老熟妇色xxxx | 国产精品久久久午夜夜伦鲁鲁 | 色窝窝无码一区二区三区色欲 | 少妇一晚三次一区二区三区 | 老熟女重囗味hdxx69 | www国产亚洲精品久久久日本 | 久久精品人妻少妇一区二区三区 | 天堂在线观看www | 亚洲日韩av一区二区三区中文 | 亚洲精品国偷拍自产在线麻豆 | 婷婷色婷婷开心五月四房播播 | 小鲜肉自慰网站xnxx | 亚洲精品美女久久久久久久 | 精品国产av色一区二区深夜久久 | 国产99久久精品一区二区 | 精品一区二区三区无码免费视频 | 香蕉久久久久久av成人 | 国产无av码在线观看 | 亚洲 欧美 激情 小说 另类 | 少妇久久久久久人妻无码 | 亚洲 激情 小说 另类 欧美 | 在线播放免费人成毛片乱码 | 色综合久久88色综合天天 | 又大又硬又黄的免费视频 | 人妻尝试又大又粗久久 | 亚洲最大成人网站 | 一本无码人妻在中文字幕免费 | 亚洲日本va中文字幕 | 国产乱人伦av在线无码 | 日本一卡二卡不卡视频查询 | 亚欧洲精品在线视频免费观看 | 99精品国产综合久久久久五月天 | 少妇激情av一区二区 | 亚洲精品综合一区二区三区在线 | 国产成人久久精品流白浆 | 亚洲精品一区三区三区在线观看 | 永久免费观看国产裸体美女 | 亚洲精品一区二区三区婷婷月 | 日本精品人妻无码77777 天堂一区人妻无码 | 中文字幕日韩精品一区二区三区 | 免费看男女做好爽好硬视频 | √天堂资源地址中文在线 | 国产无遮挡吃胸膜奶免费看 | 性色av无码免费一区二区三区 | 成人一区二区免费视频 | 九九久久精品国产免费看小说 | 麻豆成人精品国产免费 | 日韩精品无码免费一区二区三区 | 四虎国产精品一区二区 | 国产精品久久久久久亚洲毛片 | 日韩在线不卡免费视频一区 | 亚洲精品国产a久久久久久 | 成人精品一区二区三区中文字幕 | 永久免费观看国产裸体美女 | 国产特级毛片aaaaaa高潮流水 | 色综合久久久久综合一本到桃花网 | 欧美熟妇另类久久久久久不卡 | 亚洲熟妇色xxxxx欧美老妇 | 青青青手机频在线观看 | 国产成人无码午夜视频在线观看 | 在线亚洲高清揄拍自拍一品区 | 成熟人妻av无码专区 | 久久国产精品偷任你爽任你 | 免费网站看v片在线18禁无码 | 日韩精品无码一本二本三本色 | 国产麻豆精品精东影业av网站 | 国产偷国产偷精品高清尤物 | 天海翼激烈高潮到腰振不止 | 国产精品嫩草久久久久 | 九九热爱视频精品 | 国产成人久久精品流白浆 | 色综合视频一区二区三区 | 亚洲精品无码国产 | 永久黄网站色视频免费直播 | 久久精品国产一区二区三区肥胖 | 国产人妖乱国产精品人妖 | 丝袜 中出 制服 人妻 美腿 | 丰满少妇弄高潮了www | 国产内射爽爽大片视频社区在线 | 乱码午夜-极国产极内射 | 麻花豆传媒剧国产免费mv在线 | 欧美性色19p | 国产成人无码午夜视频在线观看 | 中文精品久久久久人妻不卡 | 无码人妻少妇伦在线电影 | 特大黑人娇小亚洲女 | 久久国产36精品色熟妇 | 宝宝好涨水快流出来免费视频 | 国产精品高潮呻吟av久久 | 图片小说视频一区二区 | 久久aⅴ免费观看 | 国产精品理论片在线观看 | 麻花豆传媒剧国产免费mv在线 | 亚洲经典千人经典日产 | 熟女少妇人妻中文字幕 | 丰满少妇弄高潮了www | 精品夜夜澡人妻无码av蜜桃 | 帮老师解开蕾丝奶罩吸乳网站 | 亚洲毛片av日韩av无码 | 午夜福利一区二区三区在线观看 | 在线a亚洲视频播放在线观看 | 久久精品女人天堂av免费观看 | 国产 浪潮av性色四虎 | 国产亚洲精品久久久久久国模美 | 女人被男人躁得好爽免费视频 | 国产精品视频免费播放 | 亚洲熟悉妇女xxx妇女av | 国产亚洲tv在线观看 | 色狠狠av一区二区三区 | 亚洲日韩精品欧美一区二区 | 久久精品国产精品国产精品污 | 久久婷婷五月综合色国产香蕉 | 久久久久久久久蜜桃 | 熟妇人妻无码xxx视频 | 中文字幕精品av一区二区五区 | 亚洲国产精华液网站w | 丰满人妻一区二区三区免费视频 | 国产亚洲欧美在线专区 | 蜜臀av无码人妻精品 | 久久久无码中文字幕久... | 国内精品人妻无码久久久影院蜜桃 | 国产无遮挡吃胸膜奶免费看 | 精品欧美一区二区三区久久久 | 午夜性刺激在线视频免费 | 国产精品丝袜黑色高跟鞋 | 欧美 亚洲 国产 另类 | 欧美乱妇无乱码大黄a片 | 中文无码成人免费视频在线观看 | 国产乱人伦app精品久久 国产在线无码精品电影网 国产国产精品人在线视 | 女高中生第一次破苞av | 亚洲国产精品一区二区第一页 | 狂野欧美性猛xxxx乱大交 | 国产成人无码av片在线观看不卡 | 国产人妻精品午夜福利免费 | 少妇被粗大的猛进出69影院 | www国产亚洲精品久久网站 | 77777熟女视频在线观看 а天堂中文在线官网 | 妺妺窝人体色www婷婷 | 蜜桃av抽搐高潮一区二区 | 欧美怡红院免费全部视频 | 欧美乱妇无乱码大黄a片 | 国产精品免费大片 | 国产在线精品一区二区高清不卡 | 欧美xxxx黑人又粗又长 | 无码免费一区二区三区 | 无码精品国产va在线观看dvd | 夜夜高潮次次欢爽av女 | 99久久久国产精品无码免费 | 欧美兽交xxxx×视频 | 色偷偷av老熟女 久久精品人妻少妇一区二区三区 | 日本熟妇人妻xxxxx人hd | 大地资源网第二页免费观看 | 国产色视频一区二区三区 | 青青青爽视频在线观看 | 中文无码伦av中文字幕 | 日韩在线不卡免费视频一区 | 理论片87福利理论电影 | 亚洲精品久久久久久久久久久 | 免费国产成人高清在线观看网站 | 亚洲の无码国产の无码影院 | 成人一区二区免费视频 | 美女扒开屁股让男人桶 | 女人被男人爽到呻吟的视频 | 亚洲乱亚洲乱妇50p | 国产精品无码mv在线观看 | 午夜精品久久久久久久久 | 欧美兽交xxxx×视频 | 日本一卡二卡不卡视频查询 | 18黄暴禁片在线观看 | 成人综合网亚洲伊人 | 国产成人精品久久亚洲高清不卡 | 国产成人精品一区二区在线小狼 | 成在人线av无码免观看麻豆 | 精品久久久无码中文字幕 | 大色综合色综合网站 | 午夜精品久久久内射近拍高清 | 久久精品女人的天堂av | 兔费看少妇性l交大片免费 | 久久精品国产日本波多野结衣 | 国产精品.xx视频.xxtv | 无套内谢老熟女 | 三上悠亚人妻中文字幕在线 | 中文字幕乱码人妻无码久久 | 日韩人妻系列无码专区 | 亚洲日本va午夜在线电影 | 亚洲爆乳大丰满无码专区 | 国产熟女一区二区三区四区五区 | 日韩av无码中文无码电影 | 少妇高潮一区二区三区99 | 东京热无码av男人的天堂 | 亚洲自偷自拍另类第1页 | 色综合久久88色综合天天 | 乱码午夜-极国产极内射 | 巨爆乳无码视频在线观看 | 55夜色66夜色国产精品视频 | 荫蒂被男人添的好舒服爽免费视频 | 妺妺窝人体色www在线小说 | 少妇激情av一区二区 | 亚拍精品一区二区三区探花 | 又大又黄又粗又爽的免费视频 | 波多野结衣乳巨码无在线观看 | 一个人看的www免费视频在线观看 | 亚洲日韩一区二区 | 国产精品美女久久久久av爽李琼 | 亚洲人交乣女bbw | 亚洲经典千人经典日产 | 啦啦啦www在线观看免费视频 | 免费视频欧美无人区码 | 波多野结衣一区二区三区av免费 | 日韩在线不卡免费视频一区 | 内射巨臀欧美在线视频 | 久久综合激激的五月天 | 国产欧美亚洲精品a | 亚洲综合另类小说色区 | 成人欧美一区二区三区黑人 | 亚洲另类伦春色综合小说 | 天天躁日日躁狠狠躁免费麻豆 | 无码播放一区二区三区 | 天天拍夜夜添久久精品 | 国产成人一区二区三区在线观看 | 精品国产一区二区三区四区在线看 | a在线观看免费网站大全 | 日韩精品无码一区二区中文字幕 | 日产精品99久久久久久 | 久久久久99精品国产片 | 少妇久久久久久人妻无码 | 狂野欧美性猛xxxx乱大交 | 日韩视频 中文字幕 视频一区 | 无套内谢的新婚少妇国语播放 | 午夜无码人妻av大片色欲 | 国产精品18久久久久久麻辣 | 爽爽影院免费观看 | 久久久久se色偷偷亚洲精品av | 又黄又爽又色的视频 | 伊在人天堂亚洲香蕉精品区 | 美女极度色诱视频国产 | 久久久久国色av免费观看性色 | 久久久久亚洲精品男人的天堂 | 国产精品无码mv在线观看 | 最近免费中文字幕中文高清百度 | 综合网日日天干夜夜久久 | 丰满少妇弄高潮了www | 久久精品人人做人人综合试看 | 久久成人a毛片免费观看网站 | 正在播放东北夫妻内射 | 中文字幕精品av一区二区五区 | 女人被男人躁得好爽免费视频 | 东京无码熟妇人妻av在线网址 | 国产av人人夜夜澡人人爽麻豆 | 国产三级精品三级男人的天堂 | 日韩av无码一区二区三区 | 久久综合九色综合欧美狠狠 | 九九在线中文字幕无码 | 亚洲色欲色欲天天天www | 亚洲啪av永久无码精品放毛片 | 色综合久久网 | 国产日产欧产精品精品app | 欧美精品无码一区二区三区 | 亚洲精品综合五月久久小说 | 一本久道久久综合婷婷五月 | 300部国产真实乱 | 沈阳熟女露脸对白视频 | 一本大道久久东京热无码av | 夜夜夜高潮夜夜爽夜夜爰爰 | 狠狠色欧美亚洲狠狠色www | 免费人成在线视频无码 | 好男人社区资源 | 欧美日韩一区二区免费视频 | 伊人久久大香线蕉午夜 | 国产成人无码区免费内射一片色欲 | 婷婷综合久久中文字幕蜜桃三电影 | a片免费视频在线观看 | 一本久道久久综合婷婷五月 | 欧美自拍另类欧美综合图片区 | 88国产精品欧美一区二区三区 | 国产乱人偷精品人妻a片 | 日本熟妇人妻xxxxx人hd | 高清无码午夜福利视频 | 亚洲综合在线一区二区三区 | 精品无码一区二区三区的天堂 | 领导边摸边吃奶边做爽在线观看 | 精品国产精品久久一区免费式 | 免费观看激色视频网站 | 亚洲伊人久久精品影院 | 欧美兽交xxxx×视频 | 小sao货水好多真紧h无码视频 | 欧美一区二区三区 | 国精品人妻无码一区二区三区蜜柚 | 亚洲综合在线一区二区三区 | 野狼第一精品社区 | 激情综合激情五月俺也去 | 精品人人妻人人澡人人爽人人 | 国产乱人伦偷精品视频 | 久久久久久a亚洲欧洲av冫 | 国产一区二区三区日韩精品 | 日韩av激情在线观看 | 夜夜影院未满十八勿进 | 亚洲一区av无码专区在线观看 | 熟女体下毛毛黑森林 | 精品国产一区二区三区四区 | 国产精品成人av在线观看 | 又粗又大又硬毛片免费看 | 日本成熟视频免费视频 | 亚洲成av人在线观看网址 | 97夜夜澡人人双人人人喊 | 强伦人妻一区二区三区视频18 | 熟妇人妻无码xxx视频 | 国产无套内射久久久国产 | 国产特级毛片aaaaaa高潮流水 | 久久精品女人天堂av免费观看 | 亚洲无人区一区二区三区 | 日日碰狠狠躁久久躁蜜桃 | 欧美成人午夜精品久久久 | 国产麻豆精品精东影业av网站 | 国产成人无码一二三区视频 | 久久亚洲国产成人精品性色 | 中文字幕无码人妻少妇免费 | 亚洲日本一区二区三区在线 | 丰满少妇弄高潮了www | 国产乡下妇女做爰 | 久久亚洲中文字幕精品一区 | 久久国产精品_国产精品 | 2020久久超碰国产精品最新 | 正在播放东北夫妻内射 | 国产成人无码专区 | 国产一区二区三区精品视频 | 少女韩国电视剧在线观看完整 | 国产成人无码a区在线观看视频app | 日本精品人妻无码77777 天堂一区人妻无码 | 国产麻豆精品一区二区三区v视界 | 曰韩无码二三区中文字幕 | 国产内射老熟女aaaa | 欧美老熟妇乱xxxxx | 夜夜躁日日躁狠狠久久av | 中文字幕无线码免费人妻 | 国产精品美女久久久网av | 亚洲精品综合五月久久小说 | 国产无遮挡又黄又爽免费视频 | 亚洲精品中文字幕乱码 | 乌克兰少妇xxxx做受 | 国产情侣作爱视频免费观看 | 亚洲午夜久久久影院 | 欧美性黑人极品hd | 国产乱人无码伦av在线a | 欧美国产日韩久久mv | а天堂中文在线官网 | 全球成人中文在线 | 亚洲乱码中文字幕在线 | 国产极品美女高潮无套在线观看 | 午夜理论片yy44880影院 | 人人爽人人爽人人片av亚洲 | 中国大陆精品视频xxxx | 18禁止看的免费污网站 | 国产肉丝袜在线观看 | 久久久精品国产sm最大网站 | 日产国产精品亚洲系列 | 婷婷色婷婷开心五月四房播播 | 婷婷色婷婷开心五月四房播播 | 亚洲自偷精品视频自拍 | 欧美日本精品一区二区三区 | 亚洲国产成人a精品不卡在线 | 99久久精品无码一区二区毛片 | 在线天堂新版最新版在线8 | 永久免费观看国产裸体美女 | 国产97色在线 | 免 | 亚洲呦女专区 | av无码电影一区二区三区 | 西西人体www44rt大胆高清 | 曰韩无码二三区中文字幕 | 精品国产一区二区三区四区在线看 | 婷婷五月综合激情中文字幕 | 亚洲精品久久久久久一区二区 | 欧美人与物videos另类 | 无码吃奶揉捏奶头高潮视频 | 台湾无码一区二区 | 欧美亚洲国产一区二区三区 | 好屌草这里只有精品 | 亚洲精品国产a久久久久久 | 97久久国产亚洲精品超碰热 | 亚洲欧美色中文字幕在线 | 亚洲精品久久久久久一区二区 | 国産精品久久久久久久 | 白嫩日本少妇做爰 | 免费无码一区二区三区蜜桃大 | 麻豆人妻少妇精品无码专区 | 精品久久综合1区2区3区激情 | 婷婷五月综合激情中文字幕 | 亚洲精品中文字幕 | 98国产精品综合一区二区三区 | 玩弄人妻少妇500系列视频 | 最新国产麻豆aⅴ精品无码 | 人人妻人人藻人人爽欧美一区 | 女人被爽到呻吟gif动态图视看 | 动漫av一区二区在线观看 | 免费观看黄网站 | 男人扒开女人内裤强吻桶进去 | 国产精品久久久久久久9999 | 强奷人妻日本中文字幕 | 无套内谢老熟女 | 亚洲国产精品一区二区美利坚 | 国产亚洲精品久久久闺蜜 | 六月丁香婷婷色狠狠久久 | 国产精品久久久久9999小说 | 亚洲精品成人福利网站 | 欧美大屁股xxxxhd黑色 | 久久久久成人精品免费播放动漫 | 永久黄网站色视频免费直播 |