SPSS做因子分析(非常细致的过程)
SPSS案例分析3:因子分析
? 因子分析在各行各業的應用非常廣泛,尤其是科研論文中因子分析更是頻頻出現。小兵也湊個熱鬧,參考《SPSS統計分析》書中的案例,運用SPSS進行因子分析,作為我博客?SPSS案例分析系列??的第三篇文章。 【一、概念】 【二、簡單實例】 【三、解決方案】 同一指標在不同地區是不同的,用單一某一個指標難以對12個地區進行準確的評價,單一指標智能反映地區的某一方面。所以,有必要確定綜合評價指標,便于對比。因子分析是一個不錯的選擇,5?個指標即為我們分析的對象,我們希望從這5個可觀測指標中尋找出潛在的因素,用這些具有綜合信息的因素對各地區進行評價。下圖是spss因子分析的操作界面,主要包括5方面的選項,變量區只能選擇數值型變量,分類型變量不能進入該模型。另外,spss軟件為了消除不同變量間量綱和數量級對結果的影響,在該過程中默認自動進行標準化處理,因此不需要對這些變量提前進行標準化處理。 ? ? 2、描述統計選項卡 我們希望看到各變量的描述統計信息,要對比因子提取前后的方差變化,所以選定“單變量描述性”和“原始分析結果”;現在是基于相關矩陣提取因子,所以,選定相關矩陣的“系數和顯著性水平“,比較重要的還有?KMO?和球形檢驗,通過KMO值,我們可以初步判斷該數據集是否適合采用因子分析方法。比較糟糕的是,kmo結果有時并不會出現,這主要與變量個數和樣本量大小有關。 ? ? 3、抽取選項卡 在該選項卡中設置如何提取因子,提取因子的方法有很多,最常用的就是主成分法。因為參與分析的變量測度單位不同,所以選擇“相關矩陣”,如果參與分析的變量測度單位相同,則考慮選用協方差矩陣。經常用到碎石圖對于判斷因子的個數很有幫助,一般都會選擇該項。關于特征值,不想解釋太多,這和顯著性水平一樣,都是統計學的一個基本概念。一般spss默認只提取特征值大于1的因子,但,我還可以通過自定義設置需要提取的因子個數。另外,收斂次數比較重要,可以從首次結果反饋的信息進行調整。 ? ? 4、因子旋轉選項卡 因子分析要求對因子給予命名和解釋,對因子旋轉與否取決于因子的解釋。如果不經旋轉因子已經很好解釋,那么沒有必要旋轉,否則,應該旋轉。這里直接旋轉,便于解釋。至于旋轉就是坐標變換,使得因子系數向1?和?0?靠近,對公因子的命名和解釋更加容易。旋轉方法一般采用”最大方差法“即可,輸出旋轉后的因子矩陣和載荷圖,對于結果的解釋非常有幫助。 ? ? 5、保存因子得分 要計算因子得分,就必須先寫出因子的表達式。而因子是不能直接觀察到的,是潛在的。但是可以通過可觀測到的變量獲得。前面說到,因子分析模型是原始變量為因子的線性組合,現在我們可以根據回歸的方法將模型倒過來,用原始變量也就是參與分析的變量來表示因子。從而得到因子得分。因子得分作為變量保存,對于以后深入分析很有用處。 ? ? 【四、結果解釋】 主要參考kmo結果,一般認為大于0.5,即可接受。同時還可以參考相關系數,一般認為分析變量的相關系數多數大于?0.3,則適合做因子分析;從?KMO=0.575?檢驗來看,不是特別適合因子分析,基本可以通過。這里主要是為了簡單介紹因子分析,所以,不看重這一結果。 ? ? 2、因子方差表 提取因子后因子方差的值均很高,表明提取的因子能很好的描述這?5?個指標。方差分解表也表明,默認提取的前兩個因子能夠解釋?5?個指標的?93.4%。碎石圖表明,從第三個因子開始,特征值差異很小。綜合以上,提取前兩個因子。 ? ? ? ? 3、因子矩陣 由旋轉因子矩陣可以看出,經旋轉后,因子便于命名和解釋。因子?1主要解釋的是中等房價、專業服務項目、中等校平均校齡,可以命名為社會福利因子;而因子?2?主要解釋的是其余兩個指標,總人口和總雇員。可以命名為人口因子。因子分析要求,最后得到的因子之間相互獨立,沒有相關性,而因子轉換矩陣顯示,兩個因子相關性較低。可見,對因子進行旋轉是完全有必要的。 ? ????????????? ? 4、因子系數 因子得分就是根據這個系數和標準化后的分析變量得到的。其次,在數據視圖中可以看到因子得分變量。 5、結論 經過因子分析,我們的目的實現了,找到了兩個綜合評價指標,即人口因子和福利因子。從原來的?5?個指標挖掘出?2?個潛在的綜合因子。可以對12?個地區給出客觀評價。 ? ? ? 我們可以根據因子1或者因子2得分,對這12個地區進行從大到小排序,得分高者被認為在這個維度上有較好表現。一般上因子分析到此就已經結束了,如果想再進一步展開分析,一般可以采取兩種方式,第一是進行因子綜合得分的計算,用一個總得分對樣本進行大小排序,得分高者為佳;第二,將得到的若干因子作為新的變量,進行聚類分析,這兩種方式,均單獨有文字介紹。見以下鏈接:1綜合得分;2用于聚類分析 |
總結
以上是生活随笔為你收集整理的SPSS做因子分析(非常细致的过程)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Lombok的使用方法
- 下一篇: freeradius 3.0 时间限制_