python数据分析第七章实训3_《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)...
#-*- encoding: utf-8 -*-
importnumpy as npimportpandas as pdimportmatplotlib.pyplot as pltfrom pandas importSeries,DataFrameimportreimportjson#加載下面30M+的數據
db = json.load(open('E:\\foods-2011-10-03.json'))#print len(db)#print type(db) #得到的db是個list,每個條目都是含有某種食物全部數據的字典#print db[0] #這一條非常長#print db[0].keys()#nutrients 是keys中的一個key,它對應的值是有關食物營養成分的一個字典列表,很長……#print db[0]['nutrients'][0]#下面將營養成分做成DataFrame
nutrients = DataFrame(db[0]['nutrients']) #將字典列表直接做成DataFrame#print nutrients.head()#print type(db[0]['nutrients'])
info_keys = ['description','group','id','manufacturer']
info= DataFrame(db,columns =info_keys)#print info#查看分類分布情況#print pd.value_counts(info.group)#現在,為了將所有的營養數據進行分析,需要將所有營養成分整合到一個大表中,下面分幾個步驟來完成
nutrients =[]for rec indb:
fnuts= DataFrame(rec['nutrients'])
fnuts['id'] = rec['id'] #廣播
nutrients.append(fnuts)
nutrients= pd.concat(nutrients,ignore_index = True) #將列表連接起來,相當于rbind,把行對其連接在一起
#去重,這是數據處理的重要步驟
printnutrients.duplicated().sum()
nutrients=nutrients.drop_duplicates()#由于nutrients與info有重復的名字,所以需要重命名一下info#注意下面這樣的命名方式
col_mapping = {'description':'food','group':'fgroup'}#rename函數返回的是副本,需要copy = False
info = info.rename(columns = col_mapping,copy =False)#print info.columns #查看一下列名
col_mapping = {'description':'nutrient','group':'nutgroup'}
nutrients= nutrients.rename(columns = col_mapping,copy =False)#print nutrients.columns#做完上面這些,顯然我們需要將兩個DataFrame合并起來
print nutrients.ix[:10,:]#print info.id
ndata = pd.merge(nutrients,info,on = 'id',how = 'outer')printndataprint ndata.ix[3000]#注意下面的處理方式很nice
result = ndata.groupby(['nutrient','fgroup'])['value'].quantile(0.5)printresult
result['Zinc, Zn'].order().plot(kind = 'barh')
plt.show()#只要稍微動動腦子(作者不止一次說過了……額),就可以發現各營養成分最為豐富的食物是什么了
by_nuttriend = ndata.groupby(['nutgroup','nutrient'])printby_nuttriend.head()#注意下面取出最大值的方式
get_maximum = lambdax:x.xs(x.value.idxmax())
get_minimum= lambdax:x.xs(x.value.idxmin())
max_foods= by_nuttriend.apply(get_maximum)[['value','food']]#讓food小一點
max_foods.food = max_foods.food.str[:50]printmax_foods.head()print max_foods.ix['Amino Acids']['food']
>>>
14179
nutrient nutgroup units value id
0 Protein Composition g 25.18 1008
1 Total lipid (fat) Composition g 29.20 1008
2 Carbohydrate, by difference Composition g 3.06 1008
3 Ash Other g 3.28 1008
4 Energy Energy kcal 376.00 1008
5 Water Composition g 39.28 1008
6 Energy Energy kJ 1573.00 1008
7 Fiber, total dietary Composition g 0.00 1008
8 Calcium, Ca Elements mg 673.00 1008
9 Iron, Fe Elements mg 0.64 1008
10 Magnesium, Mg Elements mg 22.00 1008
Int64Index: 375176 entries, 0 to 375175
Data columns:
nutrient 375176 non-null values
nutgroup 375176 non-null values
units 375176 non-null values
value 375176 non-null values
id 375176 non-null values
food 375176 non-null values
fgroup 375176 non-null values
manufacturer 293054 non-null values
dtypes: float64(1), int64(1), object(6)
nutrient Glycine
nutgroup Amino Acids
units g
value 0.073
id 1077
food Spearmint, fresh
fgroup Spices and Herbs
manufacturer
Name: 3000
nutrient fgroup
Adjusted Protein Sweets 12.900
Vegetables and Vegetable Products 2.180
Alanine Baby Foods 0.085
Baked Products 0.248
Beef Products 1.550
Beverages 0.003
Breakfast Cereals 0.311
Cereal Grains and Pasta 0.373
Dairy and Egg Products 0.271
Ethnic Foods 1.290
Fast Foods 0.514
Fats and Oils 0.000
Finfish and Shellfish Products 1.218
Fruits and Fruit Juices 0.027
Lamb, Veal, and Game Products 1.408
...
Zinc, Zn Finfish and Shellfish Products 0.67
Fruits and Fruit Juices 0.10
Lamb, Veal, and Game Products 3.94
Legumes and Legume Products 1.14
Meals, Entrees, and Sidedishes 0.63
Nut and Seed Products 3.29
Pork Products 2.32
Poultry Products 2.50
Restaurant Foods 0.80
Sausages and Luncheon Meats 2.13
Snacks 1.47
Soups, Sauces, and Gravies 0.20
Spices and Herbs 2.75
Sweets 0.36
Vegetables and Vegetable Products 0.33
Length: 2246
MultiIndex: 467 entries, (u'Amino Acids', u'Alanine', 48) to (u'Vitamins', u'Vitamin K (phylloquinone)', 395)
Data columns:
nutrient 467 non-null values
nutgroup 467 non-null values
units 467 non-null values
value 467 non-null values
id 467 non-null values
food 467 non-null values
fgroup 467 non-null values
manufacturer 444 non-null values
dtypes: float64(1), int64(1), object(6)
value food
nutgroup nutrient
Amino Acids Alanine 8.009 Gelatins, dry powder, unsweetened
Arginine 7.436 Seeds, sesame flour, low-fat
Aspartic acid 10.203 Soy protein isolate
Cystine 1.307 Seeds, cottonseed flour, low fat (glandless)
Glutamic acid 17.452 Soy protein isolate
nutrient
Alanine Gelatins, dry powder, unsweetened
Arginine Seeds, sesame flour, low-fat
Aspartic acid Soy protein isolate
Cystine Seeds, cottonseed flour, low fat (glandless)
Glutamic acid Soy protein isolate
Glycine Gelatins, dry powder, unsweetened
Histidine Whale, beluga, meat, dried (Alaska Native)
Hydroxyproline KENTUCKY FRIED CHICKEN, Fried Chicken, ORIGINA...
Isoleucine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Leucine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Lysine Seal, bearded (Oogruk), meat, dried (Alaska Na...
Methionine Fish, cod, Atlantic, dried and salted
Phenylalanine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Proline Gelatins, dry powder, unsweetened
Serine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Threonine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Tryptophan Sea lion, Steller, meat with fat (Alaska Native)
Tyrosine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Valine Soy protein isolate, PROTEIN TECHNOLOGIES INTE...
Name: food
[Finished in 14.1s]
總結
以上是生活随笔為你收集整理的python数据分析第七章实训3_《利用python进行数据分析》读书笔记--第七章 数据规整化:清理、转换、合并、重塑(三)...的全部內容,希望文章能夠幫你解決所遇到的問題。
                            
                        - 上一篇: javacore分析工具_Javacor
 - 下一篇: pythondockerapi_dock