Wordcount on YARN 一个MapReduce示例
生活随笔
收集整理的這篇文章主要介紹了
Wordcount on YARN 一个MapReduce示例
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
Hadoop YARN版本:2.2.0
關于hadoop yarn的環境搭建可以參考這篇博文:Hadoop 2.0安裝以及不停集群加datanode
?
hadoop hdfs yarn偽分布式運行,有如下進程
1320 DataNode1665 ResourceManager 1771 NodeManager 1195 NameNode 1487 SecondaryNameNode
?
寫一個mapreduce示例,在yarn上跑,wordcount數單詞示例
代碼在github上:https://github.com/huahuiyang/yarn-demo
步驟一
我們要處理的輸入如下,每行包含一個或多個單詞,空格分開。可以用hadoop fs -put ... 把本地文件放到hdfs上去,方便mapreduce程序讀取
hadoop yarn mapreduce hello redis java hadoop hello world here we gowordcount程序希望完成數單詞任務,輸出格式是 <單詞 ?出現次數>
?
步驟二
新建一個工程,工程結構如下,這個是個maven管理的工程
源代碼如下:
pom.xml文件<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>hadoop-yarn</groupId><artifactId>hadoop-demo</artifactId><version>0.0.1-SNAPSHOT</version><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>2.1.1-beta</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.1.1-beta</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-common</artifactId><version>2.1.1-beta</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-jobclient</artifactId><version>2.1.1-beta</version></dependency></dependencies> </project>?
package com.yhh.mapreduce.wordcount; import java.io.IOException;import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*;public class WordCountMapper extends MapReduceBase implements Mapper<LongWritable, Text, Text,IntWritable> {@Overridepublic void map(LongWritable key, Text value,OutputCollector<Text, IntWritable> output, Reporter reporter)throws IOException {String line = value.toString();if(line != null) {String[] words = line.split(" ");for(String word:words) {output.collect(new Text(word), new IntWritable(1));}}}}?
package com.yhh.mapreduce.wordcount;import java.io.IOException; import java.util.Iterator;import org.apache.hadoop.io.*; import org.apache.hadoop.mapred.*;public class WordCountReducer extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable>{@Overridepublic void reduce(Text key, Iterator<IntWritable> values,OutputCollector<Text, IntWritable> output, Reporter reporter)throws IOException {int count = 0;while(values.hasNext()) {values.next();count++;}output.collect(key, new IntWritable(count));}}?
package com.yhh.mapreduce.wordcount;import java.io.IOException;import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.FileInputFormat; import org.apache.hadoop.mapred.FileOutputFormat; import org.apache.hadoop.mapred.JobClient;public class WordCount {public static void main(String[] args) throws IOException {if(args.length != 2) {System.err.println("Error!");System.exit(1);}JobConf conf = new JobConf(WordCount.class);conf.setJobName("word count mapreduce demo");conf.setMapperClass(WordCountMapper.class);conf.setReducerClass(WordCountReducer.class);conf.setOutputKeyClass(Text.class);conf.setOutputValueClass(IntWritable.class);FileInputFormat.addInputPath(conf, new Path(args[0]));FileOutputFormat.setOutputPath(conf, new Path(args[1]));JobClient.runJob(conf);}}?
步驟三
打包發布成jar,右擊java工程,選擇Export...,然后選擇jar file生成目錄,這邊發布成wordcount.jar,然后上傳到hadoop集群
[root@hadoop-namenodenew ~]# ll wordcount.jar -rw-r--r--. 1 root root 4401 6月 1 22:05 wordcount.jar運行mapreduce任務。命令如下
hadoop jar ~/wordcount.jar com.yhh.mapreduce.wordcount.WordCount data.txt /wordcount/result可以用hadoop job -list看任務運行情況,運行成功大概會有如下輸出
14/06/01 22:06:25 INFO mapreduce.Job: The url to track the job: http://hadoop-namenodenew:8088/proxy/application_1401631066126_0003/ 14/06/01 22:06:25 INFO mapreduce.Job: Running job: job_1401631066126_0003 14/06/01 22:06:33 INFO mapreduce.Job: Job job_1401631066126_0003 running in uber mode : false 14/06/01 22:06:33 INFO mapreduce.Job: map 0% reduce 0% 14/06/01 22:06:40 INFO mapreduce.Job: map 50% reduce 0% 14/06/01 22:06:41 INFO mapreduce.Job: map 100% reduce 0% 14/06/01 22:06:47 INFO mapreduce.Job: map 100% reduce 100% 14/06/01 22:06:48 INFO mapreduce.Job: Job job_1401631066126_0003 completed successfully 14/06/01 22:06:49 INFO mapreduce.Job: Counters: 43?
然后mapreduce輸出的任務結果如下,單詞按照字典序排序
hadoop fs -cat /wordcount/result/part-00000go 1 hadoop 2 hello 2 here 1 java 1 mapreduce 1 redis 1 we 1 world 1 yarn 1?
總結
以上是生活随笔為你收集整理的Wordcount on YARN 一个MapReduce示例的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: andriod访问网络出现Network
- 下一篇: windows 环境下Eclipse开发