java判断地图范围_百度地图java 判断当前位置是否在多边形区域内
package com.haiyisoft.cAssistant.adapter.hessian;
import java.awt.geom.Point2D;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/**
* 根據(jù)訂單的經(jīng)緯度歸屬所在的商業(yè)區(qū)域
* @author lee
* @date: 2017年2月6日 下午2:12:02
*/
public class OrderMapTest {
public static void main(String[] args) {
// 被檢測(cè)的經(jīng)緯度點(diǎn)
Map orderLocation = new HashMap();
orderLocation.put("X", "217.228117");
orderLocation.put("Y", "31.830429");
// 商業(yè)區(qū)域(百度多邊形區(qū)域經(jīng)緯度集合)
String partitionLocation = "31.839064_117.219116,31.83253_117.219403,31.828511_117.218146,31.826763_117.219259,31.826118_117.220517,31.822713_117.23586,31.822958_117.238375,31.838512_117.23798,31.839617_117.226194,31.839586_117.222925";
System.out.println(isInPolygon(orderLocation, partitionLocation));
}
/**
* 判斷當(dāng)前位置是否在多邊形區(qū)域內(nèi)
* @param orderLocation 當(dāng)前點(diǎn)
* @param partitionLocation 區(qū)域頂點(diǎn)
* @return
*/
public static boolean isInPolygon(Map orderLocation,String partitionLocation){
double p_x =Double.parseDouble((String) orderLocation.get("X"));
double p_y =Double.parseDouble((String) orderLocation.get("Y"));
Point2D.Double point = new Point2D.Double(p_x, p_y);
List pointList= new ArrayList();
String[] strList = partitionLocation.split(",");
for (String str : strList){
String[] points = str.split("_");
double polygonPoint_x=Double.parseDouble(points[1]);
double polygonPoint_y=Double.parseDouble(points[0]);
Point2D.Double polygonPoint = new Point2D.Double(polygonPoint_x,polygonPoint_y);
pointList.add(polygonPoint);
}
return IsPtInPoly(point,pointList);
}
/**
* 返回一個(gè)點(diǎn)是否在一個(gè)多邊形區(qū)域內(nèi), 如果點(diǎn)位于多邊形的頂點(diǎn)或邊上,不算做點(diǎn)在多邊形內(nèi),返回false
* @param point
* @param polygon
* @return
*/
public static boolean checkWithJdkGeneralPath(Point2D.Double point, List polygon) {
java.awt.geom.GeneralPath p = new java.awt.geom.GeneralPath();
Point2D.Double first = polygon.get(0);
p.moveTo(first.x, first.y);
polygon.remove(0);
for (Point2D.Double d : polygon) {
p.lineTo(d.x, d.y);
}
p.lineTo(first.x, first.y);
p.closePath();
return p.contains(point);
}
/**
* 判斷點(diǎn)是否在多邊形內(nèi),如果點(diǎn)位于多邊形的頂點(diǎn)或邊上,也算做點(diǎn)在多邊形內(nèi),直接返回true
* @param point 檢測(cè)點(diǎn)
* @param pts 多邊形的頂點(diǎn)
* @return 點(diǎn)在多邊形內(nèi)返回true,否則返回false
*/
public static boolean IsPtInPoly(Point2D.Double point, List pts){
int N = pts.size();
boolean boundOrVertex = true; //如果點(diǎn)位于多邊形的頂點(diǎn)或邊上,也算做點(diǎn)在多邊形內(nèi),直接返回true
int intersectCount = 0;//cross points count of x
double precision = 2e-10; //浮點(diǎn)類型計(jì)算時(shí)候與0比較時(shí)候的容差
Point2D.Double p1, p2;//neighbour bound vertices
Point2D.Double p = point; //當(dāng)前點(diǎn)
p1 = pts.get(0);//left vertex
for(int i = 1; i <= N; ++i){//check all rays
if(p.equals(p1)){
return boundOrVertex;//p is an vertex
}
p2 = pts.get(i % N);//right vertex
if(p.x < Math.min(p1.x, p2.x) || p.x > Math.max(p1.x, p2.x)){//ray is outside of our interests
p1 = p2;
continue;//next ray left point
}
if(p.x > Math.min(p1.x, p2.x) && p.x < Math.max(p1.x, p2.x)){//ray is crossing over by the algorithm (common part of)
if(p.y <= Math.max(p1.y, p2.y)){//x is before of ray
if(p1.x == p2.x && p.y >= Math.min(p1.y, p2.y)){//overlies on a horizontal ray
return boundOrVertex;
}
if(p1.y == p2.y){//ray is vertical
if(p1.y == p.y){//overlies on a vertical ray
return boundOrVertex;
}else{//before ray
++intersectCount;
}
}else{//cross point on the left side
double xinters = (p.x - p1.x) * (p2.y - p1.y) / (p2.x - p1.x) + p1.y;//cross point of y
if(Math.abs(p.y - xinters) < precision){//overlies on a ray
return boundOrVertex;
}
if(p.y < xinters){//before ray
++intersectCount;
}
}
}
}else{//special case when ray is crossing through the vertex
if(p.x == p2.x && p.y <= p2.y){//p crossing over p2
Point2D.Double p3 = pts.get((i+1) % N); //next vertex
if(p.x >= Math.min(p1.x, p3.x) && p.x <= Math.max(p1.x, p3.x)){//p.x lies between p1.x & p3.x
++intersectCount;
}else{
intersectCount += 2;
}
}
}
p1 = p2;//next ray left point
}
if(intersectCount % 2 == 0){//偶數(shù)在多邊形外
return false;
} else { //奇數(shù)在多邊形內(nèi)
return true;
}
}
}
總結(jié)
以上是生活随笔為你收集整理的java判断地图范围_百度地图java 判断当前位置是否在多边形区域内的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: java swt 不显示图片_Java
- 下一篇: 2018-2019-1 《信息安全系统设