Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)
F. SUM and REPLACE
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Let D(x) be the number of positive divisors of a positive integer x. For example, D(2)?=?2 (2 is divisible by 1 and 2), D(6)?=?4 (6 is divisible by 1, 2, 3 and 6).
You are given an array a of n integers. You have to process two types of queries:
REPLACE l r — for every replace ai with D(ai);
SUM l r — calculate .
Print the answer for each SUM query.
Input
The first line contains two integers n and m (1?≤?n,?m?≤?3·105) — the number of elements in the array and the number of queries to process, respectively.
The second line contains n integers a1, a2, ..., an (1?≤?ai?≤?106) — the elements of the array.
Then m lines follow, each containing 3 integers ti, li, ri denoting i-th query. If ti?=?1, then i-th query is REPLACE li ri, otherwise it's SUM li ri (1?≤?ti?≤?2, 1?≤?li?≤?ri?≤?n).
There is at least one SUM query.
Output
For each SUM query print the answer to it.
Example
inputCopy
7 6
6 4 1 10 3 2 4
2 1 7
2 4 5
1 3 5
2 4 4
1 5 7
2 1 7
outputCopy
30
13
4
22
https://codeforces.com/contest/920/problem/F
題意:
給你一個含有n個數的數組,和m個操作
操作1:將l~r中每一個數\(a[i]\)變成 \(d(a[i])\)
? 其中$ d(x)$ 是約數個數函數。
操作2: 求l~r的a[i] 的sum和。
思路:
$ d(x)$ 約數個數函數可以利用線性篩預處理處理。
又因為 \(d(2)=2\) 和 \(d(1)=1\) 操作1對a[i]等于1或者2沒有影響。
那么我們可以對一個區間中全都是1或者2不更新操作。
同時 \(d(x)\) 是收斂函數, 在1e6 的范圍內,最多不超過5次改變就會收斂到1或2.
所以更新操作可以暴力解決,
同時用線段樹維護即可。
代碼:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <queue> #include <stack> #include <map> #include <set> #include <vector> #include <iomanip> #define ALL(x) (x).begin(), (x).end() #define sz(a) int(a.size()) #define rep(i,x,n) for(int i=x;i<n;i++) #define repd(i,x,n) for(int i=x;i<=n;i++) #define pii pair<int,int> #define pll pair<long long ,long long> #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) #define MS0(X) memset((X), 0, sizeof((X))) #define MSC0(X) memset((X), '\0', sizeof((X))) #define pb push_back #define mp make_pair #define fi first #define se second #define eps 1e-6 #define gg(x) getInt(&x) #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c)) #define du2(a,b) scanf("%d %d",&(a),&(b)) #define du1(a) scanf("%d",&(a)); using namespace std; typedef long long ll; ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;} ll lcm(ll a, ll b) {return a / gcd(a, b) * b;} ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;} void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}inline void getInt(int *p); const int maxn = 1000010; const int inf = 0x3f3f3f3f; /*** TEMPLATE CODE * * STARTS HERE ***/ // d(n)表示n的約數個數和 // prime[i]表示第i個質數 //num[i]表示i的最小質因子出現次數 int sshu[maxn]; int N = maxn; int num[maxn]; int d[maxn]; bool no[maxn]; int tot; void prepare() {d[1] = 1; num[1] = 1;for (int i = 2; i < N; i++) {if (!no[i]) {sshu[++tot] = i;d[i] = 2; num[i] = 1;}for (int j = 1; j <= tot && sshu[j]*i < N; j++) {int v = sshu[j] * i;no[v] = 1;if (i % sshu[j] == 0) {num[v] = num[i] + 1;d[v] = d[i] / num[v] * (num[v] + 1);break;}d[v] = d[i] << 1; num[v] = 1;}}//for (int i=1;i<=10;i++) printf("%d\n",d[i]); } int a[maxn]; struct node {int l, r;int laze;bool isall;ll num; } segment_tree[maxn << 2];void pushup(int rt) {segment_tree[rt].num = segment_tree[rt << 1].num + segment_tree[rt << 1 | 1].num;segment_tree[rt].isall = segment_tree[rt << 1].isall & segment_tree[rt << 1 | 1].isall; } void build(int rt, int l, int r) {segment_tree[rt].l = l;segment_tree[rt].r = r;if (l == r) {segment_tree[rt].num =a[l];if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {segment_tree[rt].isall = 1;}return ;}int mid = (l + r) >> 1;build(rt << 1, l, mid);build(rt << 1 | 1, mid + 1, r);pushup(rt); }void update(int rt, int l, int r) {if (l <= segment_tree[rt].l && r >= segment_tree[rt].r && segment_tree[rt].isall) {return;}if (segment_tree[rt].l == segment_tree[rt].r) {segment_tree[rt].num = d[segment_tree[rt].num];if (segment_tree[rt].num == 1 || segment_tree[rt].num == 2) {segment_tree[rt].isall = 1;}return ;} else {int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;if (mid >= l) {update(rt << 1, l, r);}if (mid < r) {update(rt << 1 | 1, l, r);}pushup(rt);} } ll query(int rt, int l, int r) {if (segment_tree[rt].l >= l && segment_tree[rt].r <= r) {ll res = 0ll;res += segment_tree[rt].num;return res;}int mid = (segment_tree[rt].l + segment_tree[rt].r) >> 1;ll res = 0ll;if (mid >= l) {res += query(rt << 1, l, r);}if (mid < r) {res += query(rt << 1 | 1, l, r);}return res;} int main() {//freopen("D:\\code\\text\\input.txt","r",stdin);//freopen("D:\\code\\text\\output.txt","w",stdout);prepare();int n, m;du2(n, m);repd(i, 1, n) {du1(a[i]);}build(1, 1, n);repd(i, 1, m) {int op; int l, r;du3(op, l, r);if (op == 1) {update(1, l, r);} else {printf("%lld\n", query(1, l, r));}}return 0; }inline void getInt(int *p) {char ch;do {ch = getchar();} while (ch == ' ' || ch == '\n');if (ch == '-') {*p = -(getchar() - '0');while ((ch = getchar()) >= '0' && ch <= '9') {*p = *p * 10 - ch + '0';}} else {*p = ch - '0';while ((ch = getchar()) >= '0' && ch <= '9') {*p = *p * 10 + ch - '0';}} }轉載于:https://www.cnblogs.com/qieqiemin/p/11617207.html
創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎總結
以上是生活随笔為你收集整理的Educational Codeforces Round 37-F.SUM and REPLACE (线段树,线性筛,收敛函数)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: asp.net定时执行任务-解决应用池回
- 下一篇: GridView调用setAdapter