D. Relatively Prime Graph
Let's call an undirected graph?G=(V,E)G=(V,E)?relatively prime?if and only if for each edge?(v,u)∈E(v,u)∈E??GCD(v,u)=1GCD(v,u)=1?(the greatest common divisor of?vv?and?uu?is?11). If there is no edge between some pair of vertices?vv?and?uu?then the value of?GCD(v,u)GCD(v,u)?doesn't matter. The vertices are numbered from?11?to?|V||V|.
Construct a?relatively prime?graph with?nn?vertices and?mm?edges such that it is connected and it contains neither self-loops nor multiple edges.
If there exists no valid graph with the given number of vertices and edges then output?"Impossible".
If there are multiple answers then print any of them.
InputThe only line contains two integers?nn?and?mm?(1≤n,m≤1051≤n,m≤105) — the number of vertices and the number of edges.
OutputIf there exists no valid graph with the given number of vertices and edges then output?"Impossible".
Otherwise print the answer in the following format:
The first line should contain the word?"Possible".
The?ii-th of the next?mm?lines should contain the?ii-th edge?(vi,ui)(vi,ui)?of the resulting graph (1≤vi,ui≤n,vi≠ui1≤vi,ui≤n,vi≠ui). For each pair?(v,u)(v,u)there can be no more pairs?(v,u)(v,u)?or?(u,v)(u,v). The vertices are numbered from?11?to?nn.
If there are multiple answers then print any of them.
Examples input Copy 5 6 output Copy Possible2 5
3 2
5 1
3 4
4 1
5 4 input Copy 6 12 output Copy Impossible Note
Here is the representation of the graph from the first example:
?
? ?這題無腦暴力 暴力真的出了奇跡?
? ?暴力枚舉一遍就行了
?
? ??
1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 1e5 + 10; 4 const int INF = 0x3fffffff; 5 typedef long long LL; 6 using namespace std; 7 int n, m; 8 struct node { 9 int x, y; 10 node () {} 11 node (int x, int y): x(x), y(y) {} 12 } qu[maxn]; 13 int main() { 14 scanf("%d%d", &n, &m); 15 if (n - 1 > m) { 16 printf("Impossible\n"); 17 return 0; 18 } 19 int k = 0, flag = 0; 20 for (int i = 1 ; i <= n ; i++) { 21 for (int j = i + 1 ; j <= n ; j++) { 22 if (__gcd(i, j) == 1) qu[k++] = node(i, j); 23 if (k == m) { 24 flag = 1; 25 break; 26 } 27 } 28 if (flag) break; 29 } 30 if (flag) { 31 printf("Possible\n"); 32 for (int i = 0 ; i < k ; i++) 33 printf("%d %d\n", qu[i].x, qu[i].y); 34 } else printf("Impossible\n"); 35 return 0; 36 }?
轉載于:https://www.cnblogs.com/qldabiaoge/p/9314221.html
總結
以上是生活随笔為你收集整理的D. Relatively Prime Graph的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: js--------1.时间
- 下一篇: linux日常管理-防火墙selinux