递推公式求通项
不動點求通項
1、一階線性遞推式:an+1=can+d,c≠0,c≠1a_{n+1}=ca_n+d,c\neq 0,c\neq 1an+1?=can?+d,c?=0,c?=1,已知 a1a_1a1?的值
特征方程:f(x)=ax+bf(x)=ax+bf(x)=ax+b,令 f(x)=xf(x)=xf(x)=x,解得特征根為 x0x_0x0?,則可得:an?x0=c(an?1?x0)=cn?1(a1?x0)a_n-x_0=c(a_{n-1}-x_0)=c^{n-1}(a_1-x_0)an??x0?=c(an?1??x0?)=cn?1(a1??x0?)
an=cn?1(a1?x0)+x0a_n=c^{n-1}(a_1-x_0)+x_0an?=cn?1(a1??x0?)+x0?
當 x0=a1x_0= a_1x0?=a1?時,an=x0a_n=x_0an?=x0?
當 x0≠a1x_0\neq a_1x0??=a1?時,an=cn?1(a1?x0)+x0a_n=c^{n-1}(a_1-x_0)+x_0an?=cn?1(a1??x0?)+x0?
2、二階線性遞推:an+2=pan+1+qana_{n+2}=pa_{n+1}+qa_{n}an+2?=pan+1?+qan?,已知 a1,a2a_1,a_2a1?,a2?,可以聯立求得A、B
特征方程:x2=px+qx^2=px+qx2=px+q,設有特征根x1,x2x_1,x_2x1?,x2?,
當 x1≠x2x_1\neq x_2x1??=x2?時,an=Ax1n?1+Bx2n?1a_n=Ax_1^{n-1}+Bx_2^{n-1}an?=Ax1n?1?+Bx2n?1?
當 x1=x2x_1=x_2x1?=x2?時,an=(A+Bn)x1n?1a_n=(A+Bn)x_1^{n-1}an?=(A+Bn)x1n?1?
3、分式遞推式:an+1=aan+bcan+da_{n+1}=\frac {aa_{n}+b}{ca_n+d}an+1?=can?+daan?+b?,r≠0,ad≠bc,a1≠?dcr\neq 0,ad\neq bc,a_1\neq -\frac dcr?=0,ad?=bc,a1??=?cd?,已知a1a_1a1?的值
特征方程:x=ax+bcx+dx=\frac {ax+b}{cx+d}x=cx+dax+b?,設x1,x2x_1,x_2x1?,x2?是兩個特征根,
當 x1≠x2x_1\neq x_2x1??=x2?時,an?x1an?x2=a?x1ca?x2c×an?1?x1an?1?x2\frac {a_n-x_1}{a_n-x_2}=\frac {a-x_1c}{a-x_2c}\times \frac{a_{n-1}-x_1}{a_{n-1}-x_2}an??x2?an??x1??=a?x2?ca?x1?c?×an?1??x2?an?1??x1??
當 x1=x2x_1= x_2x1?=x2?時,1an?x1=1an?1?x1+2ca+d\frac 1{a_n-x_1}=\frac 1{a_{n-1}-x_1}+\frac {2c}{a+d}an??x1?1?=an?1??x1?1?+a+d2c?
型如:an+1=an2+ban+da_{n+1}=\frac {a_n^2+b}{a_n+d}an+1?=an?+dan2?+b?
例:已知數列 { ana_nan?},an+1=an2+22an,a1=2a_{n+1}=\frac {a_n^2+2}{2a_n},a_1=2an+1?=2an?an2?+2?,a1?=2,求通項
解:f(x)=x2+22x=x,x1=2,x2=?2f(x)=\frac {x^2+2}{2x}=x,x_1=\sqrt 2,x_2=-\sqrt 2f(x)=2xx2+2?=x,x1?=2?,x2?=?2?
an+1?2an+1+2=(an?2an+2)2=(a1?2a1+2)2n?1\frac {a_{n+1}-2}{a_{n+1}+2}=(\frac {a_{n}-2}{a_{n}+2})^2=(\frac {a_1-2}{a_1+2})^{2^{n-1}}an+1?+2an+1??2?=(an?+2an??2?)2=(a1?+2a1??2?)2n?1
解得:
an=2×(2+2)2n?1+(2?2)2n?1(2+2)2n?1?(2?2)2n?1a_n=\sqrt 2\times \frac{ (2+\sqrt 2)^{2^{n-1} } +(2-\sqrt 2)^{2^{n-1}} }{ (2+\sqrt 2)^{2^{n-1} } -(2-\sqrt 2)^{2^{n-1}} }an?=2?×(2+2?)2n?1?(2?2?)2n?1(2+2?)2n?1+(2?2?)2n?1?
總結
- 上一篇: 腾讯,字节等大厂面试真题汇总,赶快收藏备
- 下一篇: java铁三公路自行车_公路车、计时车、